KingKazma's picture
Add BERTopic model
ec49a5c
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

xsum_108_5000000_2500000_validation

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/xsum_108_5000000_2500000_validation")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 9
  • Number of training documents: 11332
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 said - world - first - one - time 41 -1_said_world_first_one
0 said - mr - would - people - also 813 0_said_mr_would_people
1 win - game - league - club - player 7931 1_win_game_league_club
2 sport - olympic - race - gold - world 2105 2_sport_olympic_race_gold
3 round - world - champion - open - golf 219 3_round_world_champion_open
4 murray - match - tennis - set - number 70 4_murray_match_tennis_set
5 race - hamilton - f1 - rosberg - mercedes 60 5_race_hamilton_f1_rosberg
6 yn - ar - ei - yr - wedi 50 6_yn_ar_ei_yr
7 fight - title - boxing - champion - im 43 7_fight_title_boxing_champion

Training hyperparameters

  • calculate_probabilities: True
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False

Framework versions

  • Numpy: 1.22.4
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.3
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.2.2
  • Transformers: 4.31.0
  • Numba: 0.57.1
  • Plotly: 5.13.1
  • Python: 3.10.12