KingKazma's picture
Add BERTopic model
001affd
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

cnn_dailymail_6789_2000_1000_v1_train

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/cnn_dailymail_6789_2000_1000_v1_train")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 3
  • Number of training documents: 2000
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 second - rider - minute - roma - teammate 268 -1_second_rider_minute_roma
0 said - one - year - would - people 1 0_said_one_year_would
1 player - game - world - first - club 1731 1_player_game_world_first

Training hyperparameters

  • calculate_probabilities: False
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.3
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.2.2
  • Transformers: 4.31.0
  • Numba: 0.57.1
  • Plotly: 5.15.0
  • Python: 3.10.12