|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pub_med_summarization_dataset |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: distilbart-xsum-12-1-finetuned-pubmed |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: pub_med_summarization_dataset |
|
type: pub_med_summarization_dataset |
|
args: document |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 27.0012 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbart-xsum-12-1-finetuned-pubmed |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-1](https://huggingface.co/sshleifer/distilbart-xsum-12-1) on the pub_med_summarization_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8236 |
|
- Rouge1: 27.0012 |
|
- Rouge2: 12.728 |
|
- Rougel: 19.8685 |
|
- Rougelsum: 25.0485 |
|
- Gen Len: 59.969 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 3.3604 | 1.0 | 4000 | 3.1575 | 25.0078 | 11.5381 | 18.4246 | 23.1605 | 54.8935 | |
|
| 3.0697 | 2.0 | 8000 | 2.9478 | 26.4947 | 12.5411 | 19.4328 | 24.6123 | 57.948 | |
|
| 2.8638 | 3.0 | 12000 | 2.8672 | 26.8856 | 12.7568 | 19.8949 | 24.8745 | 59.6245 | |
|
| 2.7243 | 4.0 | 16000 | 2.8347 | 26.7347 | 12.5152 | 19.6516 | 24.7756 | 60.439 | |
|
| 2.6072 | 5.0 | 20000 | 2.8236 | 27.0012 | 12.728 | 19.8685 | 25.0485 | 59.969 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.6 |
|
|