bert-finetuned-ner

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6370
  • Precision: 0.5313
  • Recall: 0.4530
  • F1: 0.4891
  • Accuracy: 0.9290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 125 0.5387 0.2190 0.0552 0.0882 0.8991
No log 2.0 250 0.4241 0.3430 0.1750 0.2317 0.9117
No log 3.0 375 0.4721 0.3502 0.1786 0.2366 0.9088
0.1529 4.0 500 0.6204 0.4300 0.2320 0.3014 0.9134
0.1529 5.0 625 0.6479 0.4470 0.2486 0.3195 0.9104
0.1529 6.0 750 0.4640 0.4532 0.4015 0.4258 0.9220
0.1529 7.0 875 0.5170 0.4288 0.4217 0.4253 0.9224
0.0229 8.0 1000 0.5846 0.5524 0.4273 0.4818 0.9233
0.0229 9.0 1125 0.5569 0.4644 0.4328 0.4480 0.9234
0.0229 10.0 1250 0.5818 0.5502 0.4438 0.4913 0.9258
0.0229 11.0 1375 0.6183 0.5607 0.4254 0.4838 0.9231
0.0048 12.0 1500 0.6148 0.5385 0.4254 0.4753 0.9250
0.0048 13.0 1625 0.6271 0.4896 0.4328 0.4594 0.9255
0.0048 14.0 1750 0.6475 0.5668 0.4217 0.4836 0.9267
0.0048 15.0 1875 0.6428 0.5704 0.4328 0.4921 0.9282
0.0016 16.0 2000 0.6577 0.5487 0.4254 0.4793 0.9270
0.0016 17.0 2125 0.6688 0.5556 0.4144 0.4747 0.9262
0.0016 18.0 2250 0.6481 0.5434 0.4383 0.4852 0.9282
0.0016 19.0 2375 0.6432 0.5428 0.4438 0.4883 0.9289
0.0007 20.0 2500 0.6370 0.5313 0.4530 0.4891 0.9290

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.8.0
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.