metadata
license: apache-2.0
base_model: state-spaces/mamba-130m-hf
tokenizer: yhavinga/dutch-llama-tokenizer
datasets: Kalamazooter/GeminiPhiDutch
A Tiny Dutch model, just-about semi-coherent
Overview
An experimental fine-tune of mamba-130m using the GeminiPhi Dataset and the dutch-llama-tokenizer by yhavinga
Usage
You need to install transformers
from main
until transformers=4.39.0
is released.
pip install git+https://github.com/huggingface/transformers@main
We also recommend you to install both causal_conv_1d
and mamba-ssm
using:
pip install causal-conv1d>=1.2.0
pip install mamba-ssm
If any of these two is not installed, the "eager" implementation will be used. Otherwise the more optimised cuda
kernels will be used.
Generation
You can use the classic generate
API:
setup (For Cuda)
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
import torch
device = torch.device('cuda:0')
tokenizer = AutoTokenizer.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
model = MambaForCausalLM.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
model = model.to(device)
Inference
input_ids = tokenizer("**Vraag: Ik heb 4 schapen, per schaap heb ik 3 lammetjes, hoeveel lammetjes heb ik?\n\n Antwoord:", return_tensors="pt").input_ids.to(device)
out = model.generate(input_ids, max_new_tokens=50)
print(tokenizer.batch_decode(out))
['<s> **Vraag: Ik heb 4 schapen, per schaap heb ik 3 lammetjes, hoeveel lammetjes heb ik?\n\n Antwoord:\n\n1. Bereken het aantal lammetjes dat je hebt: 4 schapen x 3 lammetjes per schaap = 12 lammetjes\n2. Bereken het aantal lammetjes dat je hebt: 12 lam']
PEFT finetuning example
In order to finetune using the peft
library, it is recommend to keep the model in float32!
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
tokenizer = AutoTokenizer.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
model = AutoModelForCausalLM.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()