MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion

@article{zhang2024monst3r,
  author    = {Zhang, Junyi and Herrmann, Charles and Hur, Junhwa and Jampani, Varun and Darrell, Trevor and Cole, Forrester and Sun, Deqing and Yang, Ming-Hsuan},
  title     = {MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion},
  journal   = {arXiv preprint arxiv:2410.03825},
  year      = {2024}
}

Model info

How to use

First, install monst3r. To load the model:

from dust3r.model import AsymmetricCroCo3DStereo
import torch

model = AsymmetricCroCo3DStereo.from_pretrained("Junyi42/MonST3R_PO-TA-S-W_ViTLarge_BaseDecoder_512_dpt")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
Downloads last month
2,186
Safetensors
Model size
571M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support dust3r models for this pipeline type.