metadata
base_model: JunxiongWang/mamba_0_75_sft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: mamba_0_75_dpo_ep3
results: []
Please check here for details.
mamba_0_75_dpo_ep3
This model is a fine-tuned version of JunxiongWang/mamba_0_75_sft on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.7077
- Rewards/chosen: -4.3611
- Rewards/rejected: -7.0013
- Rewards/accuracies: 0.7812
- Rewards/margins: 2.6403
- Logps/rejected: -333.1784
- Logps/chosen: -302.4903
- Logits/rejected: -2.8351
- Logits/chosen: -2.8752
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1188 | 1.0466 | 2000 | 0.5385 | -1.3137 | -2.8323 | 0.7852 | 1.5186 | -291.4879 | -272.0161 | -2.9057 | -2.9472 |
0.0093 | 2.0931 | 4000 | 0.7077 | -4.3611 | -7.0013 | 0.7812 | 2.6403 | -333.1784 | -302.4903 | -2.8351 | -2.8752 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.0+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
@article{junxiongdaniele2024mambainllama,
title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
journal = {arXiv preprint arXiv:2408.15237},
year = {2024}
}