mamba_0_75_dpo_ep3 / README.md
JunxiongWang's picture
Update README.md
533247d verified
metadata
base_model: JunxiongWang/mamba_0_75_sft
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: mamba_0_75_dpo_ep3
    results: []

Please check here for details.

mamba_0_75_dpo_ep3

This model is a fine-tuned version of JunxiongWang/mamba_0_75_sft on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7077
  • Rewards/chosen: -4.3611
  • Rewards/rejected: -7.0013
  • Rewards/accuracies: 0.7812
  • Rewards/margins: 2.6403
  • Logps/rejected: -333.1784
  • Logps/chosen: -302.4903
  • Logits/rejected: -2.8351
  • Logits/chosen: -2.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1188 1.0466 2000 0.5385 -1.3137 -2.8323 0.7852 1.5186 -291.4879 -272.0161 -2.9057 -2.9472
0.0093 2.0931 4000 0.7077 -4.3611 -7.0013 0.7812 2.6403 -333.1784 -302.4903 -2.8351 -2.8752

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1

MambaInLlama

@article{junxiongdaniele2024mambainllama,
  title   = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
  author  = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
  journal = {arXiv preprint arXiv:2408.15237},
  year    = {2024}
}