Please check here for details.

mamba_0_5_dpo_ep3

This model is a fine-tuned version of JunxiongWang/mamba_0_5_dpo_ep3 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7141
  • Rewards/chosen: -5.3346
  • Rewards/rejected: -8.3118
  • Rewards/accuracies: 0.7891
  • Rewards/margins: 2.9772
  • Logps/rejected: -337.4994
  • Logps/chosen: -304.9619
  • Logits/rejected: -2.7812
  • Logits/chosen: -2.8272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1171 1.0466 2000 0.5329 -1.4521 -2.9272 0.7734 1.4750 -283.6535 -266.1376 -2.8897 -2.9362
0.0086 2.0931 4000 0.7141 -5.3346 -8.3118 0.7891 2.9772 -337.4994 -304.9619 -2.7812 -2.8272

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1

MambaInLlama

@article{junxiongdaniele2024mambainllama,
  title   = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
  author  = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
  journal = {arXiv preprint arXiv:2408.15237},
  year    = {2024}
}
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for JunxiongWang/mamba_0_5_dpo_ep3

Finetuned
(2)
this model

Dataset used to train JunxiongWang/mamba_0_5_dpo_ep3

Collection including JunxiongWang/mamba_0_5_dpo_ep3