Train in 30B Byte. Mode size 353M. Table 2 in MambaByte

To use

import torch
import numpy as np

from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel

model=MambaLMHeadModel.from_pretrained("JunxiongWang/MambaByte_Arxiv", device='cuda', dtype=torch.bfloat16)

text = "\documentclass[12pt]{article}"
text_byte = np.frombuffer(text.encode('utf-8'), dtype=np.uint8)
input_ids = torch.from_numpy(text_byte[None, :].copy()).long().cuda()

sample = model.generate(
    input_ids=input_ids,
    max_length=2048,
    cg=True,
    return_dict_in_generate=True,
    output_scores=True,
    enable_timing=True,
    temperature=1,
    top_k=256,
    top_p=0.9,
)

print(bytes(sample.sequences[0].tolist()).decode('utf-8'))

Output:

\documentclass[12pt]{article}}}}^{{\mathbf{P}}\uplus{\mathbf{Q}}}}}}}{}}$ is a symmetric poset. This implies that $$\operatorname{end}({\mathscr{L}}) = \operatorname{end}({\mathscr{L}}\setminus\{\sigma_{{\mathbf{P}}}\}) = \operatorname{end}({\mathscr{L}}\setminus\{\sigma_{{\mathbf{Q}}}\}) = \operatorname{end}({\mathscr{L}}\setminus\{\sigma_{{\mathbf{P}}},\sigma_{{\mathbf{Q}}}\}),$$ i.e., ${\mathscr{L}}$ is $\{\sigma_{{\mathbf{P}}},\sigma_{{\mathbf{Q}}}\}$-bistochastic for any ${\mathbf{P}}\neq{\mathbf{Q}}$. Thus, ${\mathscr{L}}$ is reversible, and is in fact maximal among all $\{\sigma_{{\mathbf{P}}},\sigma_{{\mathbf{Q}}}\}$-bistochastic matrices.

Since ${\mathscr{L}}$ is in the same class as $\sigma_{{\mathbf{P}}}^{{\mathbf{Q}}}$, we have $\operatorname{end}({\mathscr{L}})\subseteq\operatorname{end}({\mathscr{L}})$. Conversely, if $\operatorname{end}({\mathscr{L}})=\operatorname{end}({\mathscr{L}})$, then $\sigma_{{\mathbf{P}}}^{{\mathbf{Q}}}$ is maximal in $\operatorname{end}({\mathscr{L}})$. Since ${\mathbf{P}}\setminus\{\sigma_{{\mathbf{P}}}\}\subseteq\operatorname{end}({\mathscr{L}})$, this implies that ${\mathscr{L}}$ is in the same class as $\sigma_{{\mathbf{P}}}^{{\mathbf{Q}}}$, and hence ${\mathscr{L}}$ is reversible.

We are now ready to show that $\{\sigma_{{\mathbf{P}}},\sigma_{{\mathbf{Q}}}\}$-bistochastic matrices form a symmetric poset of ends.

\[lem:end\_symm\_class\] Let ${\mathbf{P}},{\mathbf{Q}}\in{\mathscr{M}}$. Then $\sigma_{{\mathbf{P}}}^{{\mathbf{Q}}}$ is symmetric if and only if $\operatorname{end}({\mathscr{L}})=\operatorname{end}({\mathscr{L}})$.

Suppose that $\operatorname{end}({\mathscr{L}})=\operatorname{end}({\mathscr{L}})$, and we prove that $\sigma_{{\mathbf{P}}}^{{\mathbf{Q}}}$ is symmetric. Clearly, $\operatorname{end}({\mathscr{L}})$ contains exactly the ends of $\operatorname{end}({\mathscr{L}})$ by definition, and the only case that survives is when $\operatorname{end}({\mathscr{L}})=\operatorname{end}({\mathscr{L}})$. By construction, this means that $\sigma_{{\mathbf{P}}}
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including JunxiongWang/MambaByte_Arxiv