Junxiong Wang
add models
5009c6e
|
raw
history blame
1.88 kB
metadata
base_model: Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0
tags:
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
  - HuggingFaceH4/orca_dpo_pairs
  - JunxiongWang/llama3-ultrafeedback-armorm
model-index:
  - name: Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-dpo-short
    results: []

Visualize in Weights & Biases

Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-dpo-short

This model is a fine-tuned version of Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0 on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.1.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1