update model card README.md
Browse files
README.md
CHANGED
@@ -15,11 +15,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0](https://huggingface.co/JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Bleu: 95.
|
20 |
-
- Em: 0.
|
21 |
-
- Rm: 0.
|
22 |
-
- Gen Len:
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -39,25 +39,41 @@ More information needed
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 5e-05
|
42 |
-
- train_batch_size:
|
43 |
-
- eval_batch_size:
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_steps: 2000
|
48 |
- num_epochs: 300.0
|
49 |
-
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch
|
54 |
-
|
55 |
-
|
|
56 |
-
|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0](https://huggingface.co/JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.3523
|
19 |
+
- Bleu: 95.2821
|
20 |
+
- Em: 0.1415
|
21 |
+
- Rm: 0.3046
|
22 |
+
- Gen Len: 58.7746
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 32
|
43 |
+
- eval_batch_size: 8
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_steps: 2000
|
48 |
- num_epochs: 300.0
|
|
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
+
| Training Loss | Epoch | Step | Bleu | Em | Gen Len | Validation Loss | Rm |
|
53 |
+
|:-------------:|:------:|:-----:|:-------:|:------:|:-------:|:---------------:|:------:|
|
54 |
+
| 4.0279 | 12.82 | 500 | 49.841 | 0.0 | 51.6403 | 2.4031 | 0.0 |
|
55 |
+
| 1.3442 | 25.64 | 1000 | 85.0177 | 0.0 | 57.9784 | 0.5014 | 0.0 |
|
56 |
+
| 0.2522 | 38.46 | 1500 | 94.0714 | 0.0168 | 57.9137 | 0.3293 | 0.0216 |
|
57 |
+
| 0.1534 | 51.28 | 2000 | 94.4328 | 0.0024 | 58.9448 | 0.3207 | 0.0072 |
|
58 |
+
| 0.1305 | 64.1 | 2500 | 94.0708 | 0.0 | 59.6115 | 0.3247 | 0.0 |
|
59 |
+
| 0.1226 | 76.92 | 3000 | 94.3143 | 0.0024 | 58.235 | 0.3325 | 0.0024 |
|
60 |
+
| 0.1131 | 89.74 | 3500 | 94.5678 | 0.0048 | 59.6811 | 0.3401 | 0.0144 |
|
61 |
+
| 0.1053 | 102.56 | 4000 | 94.4738 | 0.0168 | 59.0288 | 0.3374 | 0.0552 |
|
62 |
+
| 0.0999 | 115.38 | 4500 | 94.6291 | 0.0336 | 58.6283 | 0.3437 | 0.0624 |
|
63 |
+
| 0.0941 | 128.21 | 5000 | 94.7896 | 0.0695 | 58.4149 | 0.3512 | 0.1271 |
|
64 |
+
| 0.0904 | 141.03 | 5500 | 94.4101 | 0.0719 | 58.2518 | 0.3424 | 0.1439 |
|
65 |
+
| 0.0833 | 153.85 | 6000 | 94.7141 | 0.0887 | 59.0312 | 0.3462 | 0.1775 |
|
66 |
+
| 0.0772 | 166.67 | 6500 | 94.6758 | 0.0911 | 59.0767 | 0.3467 | 0.2062 |
|
67 |
+
| 0.0722 | 179.49 | 7000 | 94.5698 | 0.1055 | 58.1415 | 0.3462 | 0.2398 |
|
68 |
+
| 0.0669 | 192.31 | 7500 | 95.0365 | 0.1223 | 58.7794 | 0.3537 | 0.2782 |
|
69 |
+
| 0.062 | 205.13 | 8000 | 94.8694 | 0.1247 | 58.211 | 0.3505 | 0.2686 |
|
70 |
+
| 0.0576 | 217.95 | 8500 | 94.8168 | 0.1271 | 59.0791 | 0.3511 | 0.2926 |
|
71 |
+
| 0.0539 | 230.77 | 9000 | 95.1935 | 0.1367 | 58.6787 | 0.3490 | 0.3046 |
|
72 |
+
| 0.0502 | 243.59 | 9500 | 95.1882 | 0.1319 | 58.5228 | 0.3490 | 0.3141 |
|
73 |
+
| 0.0473 | 256.41 | 10000 | 95.1198 | 0.1319 | 58.4245 | 0.3504 | 0.307 |
|
74 |
+
| 0.045 | 269.23 | 10500 | 0.3505 | 95.047 | 0.1343 | 0.307 | 58.3213|
|
75 |
+
| 0.0429 | 282.05 | 11000 | 0.3522 | 95.2397| 0.1391 | 0.3046 | 58.7242|
|
76 |
+
| 0.0416 | 294.87 | 11500 | 0.3523 | 95.2821| 0.1415 | 0.3046 | 58.7746|
|
77 |
|
78 |
|
79 |
### Framework versions
|