BERT2BERT_finetuned

This model is a fine-tuned version of JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1672
  • Bleu: 96.7679
  • Em: 0.6307
  • Rm: 0.7482
  • Gen Len: 75.6355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 300.0

Training results

Training Loss Epoch Step Bleu Em Gen Len Validation Loss Rm
3.4354 12.82 500 56.6427 0.0 70.5947 1.5065 0.0
0.8473 25.64 1000 90.5419 0.0192 76.9736 0.3859 0.0216
0.2049 38.46 1500 93.6495 0.0504 75.1655 0.2472 0.0671
0.1222 51.28 2000 93.8388 0.0959 75.6403 0.2338 0.1487
0.0923 64.1 2500 94.71 0.2158 75.8177 0.1944 0.2662
0.0752 76.92 3000 95.0458 0.2662 75.2638 0.1990 0.3022
0.0627 89.74 3500 95.3518 0.3429 76.9928 0.1957 0.3957
0.052 102.56 4000 95.5392 0.3837 76.1007 0.1861 0.4508
0.0457 115.38 4500 95.6692 0.4173 76.1727 0.1880 0.4892
0.0386 128.21 5000 95.9215 0.446 76.0168 0.1850 0.5276
0.0321 141.03 5500 95.931 0.4964 75.2566 0.1724 0.5875
0.026 153.85 6000 96.4317 0.5348 75.741 0.1687 0.6499
0.0242 166.67 6500 96.197 0.5372 76.1127 0.1707 0.6403
0.0193 179.49 7000 96.3422 0.5564 75.3933 0.1643 0.6691
0.0164 192.31 7500 96.5278 0.5779 75.4508 0.1650 0.693
0.0139 205.13 8000 96.6382 0.6091 75.9592 0.1668 0.7314
0.012 217.95 8500 96.5488 0.6163 76.0024 0.1644 0.729
0.0106 230.77 9000 96.6353 0.6091 75.5468 0.1653 0.7266
0.0093 243.59 9500 96.8984 0.6331 75.7242 0.1663 0.7482
0.0084 256.41 10000 96.6199 0.6331 75.3885 0.1676 0.7482
0.0076 269.23 10500 0.1678 96.5038 0.6283 0.7482 75.3453
0.007 282.05 11000 0.1669 96.7187 0.6355 0.7458 75.9281
0.0065 294.87 11500 0.1672 96.7679 0.6307 0.7482 75.6355

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.