|
--- |
|
base_model: meta-llama/Llama-3.2-3B-Instruct |
|
library_name: peft |
|
license: llama3.2 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: results_1011 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results_1011 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9956 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.6788 | 0.3901 | 100 | 2.2881 | |
|
| 2.4361 | 0.7801 | 200 | 2.2154 | |
|
| 2.3903 | 1.1702 | 300 | 2.1747 | |
|
| 2.3166 | 1.5602 | 400 | 2.1358 | |
|
| 2.2868 | 1.9503 | 500 | 2.1058 | |
|
| 2.2048 | 2.3403 | 600 | 2.0800 | |
|
| 2.1999 | 2.7304 | 700 | 2.0613 | |
|
| 2.1711 | 3.1204 | 800 | 2.0471 | |
|
| 2.1038 | 3.5105 | 900 | 2.0329 | |
|
| 2.1115 | 3.9005 | 1000 | 2.0185 | |
|
| 2.0859 | 4.2906 | 1100 | 2.0129 | |
|
| 2.0455 | 4.6806 | 1200 | 2.0084 | |
|
| 2.0338 | 5.0707 | 1300 | 2.0022 | |
|
| 1.9991 | 5.4608 | 1400 | 2.0011 | |
|
| 1.9948 | 5.8508 | 1500 | 1.9966 | |
|
| 1.948 | 6.2409 | 1600 | 1.9977 | |
|
| 1.9773 | 6.6309 | 1700 | 1.9909 | |
|
| 1.9228 | 7.0210 | 1800 | 1.9915 | |
|
| 1.8997 | 7.4110 | 1900 | 1.9947 | |
|
| 1.9212 | 7.8011 | 2000 | 1.9868 | |
|
| 1.8786 | 8.1911 | 2100 | 2.0092 | |
|
| 1.8762 | 8.5812 | 2200 | 2.0070 | |
|
| 1.8724 | 8.9712 | 2300 | 2.0023 | |
|
| 1.8604 | 9.3613 | 2400 | 1.9978 | |
|
| 1.8436 | 9.7513 | 2500 | 1.9956 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.45.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.1 |