metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-welsh_neu-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: cy
split: test
args: cy
metrics:
- name: Wer
type: wer
value: 0.6304702771070484
wav2vec2-large-xls-r-300m-welsh_neu-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.7219
- Wer: 0.6305
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.8876 | 0.83 | 100 | 2.9055 | 1.0000 |
2.8423 | 1.67 | 200 | 2.7555 | 0.9995 |
1.7609 | 2.5 | 300 | 1.1030 | 0.8669 |
1.0028 | 3.33 | 400 | 0.9130 | 0.7442 |
0.8115 | 4.17 | 500 | 0.8408 | 0.7128 |
0.6146 | 5.0 | 600 | 0.7219 | 0.6305 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3