metadata
library_name: peft
language:
- en
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- JacobLinCool/ami-disfluent
model-index:
- name: whisper-large-v3-turbo-verbatim-3-lora
results: []
whisper-large-v3-turbo-verbatim-3-lora
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the JacobLinCool/ami-disfluent dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.1459
- eval_wer: 7.7269
- eval_cer: 3.2519
- eval_decode_runtime: 111.0004
- eval_wer_runtime: 0.0705
- eval_cer_runtime: 0.0932
- eval_runtime: 185.4061
- eval_samples_per_second: 10.205
- eval_steps_per_second: 0.324
- epoch: 3.064
- step: 1000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
Framework versions
- PEFT 0.14.0
- Transformers 4.48.0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0