JEdward7777's picture
update model card README.md
7db85d2
|
raw
history blame
5.46 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9733333333333334

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1787
  • Accuracy: 0.9733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.91 5 0.1787 0.9733
No log 1.91 10 0.1787 0.9733
No log 2.91 15 0.1787 0.9733
0.3799 3.91 20 0.1787 0.9733
0.3799 4.91 25 0.1787 0.9733
0.3799 5.91 30 0.1787 0.9733
0.3799 6.91 35 0.1787 0.9733
0.3648 7.91 40 0.1787 0.9733
0.3648 8.91 45 0.1787 0.9733
0.3648 9.91 50 0.1787 0.9733
0.3648 10.91 55 0.1787 0.9733
0.3954 11.91 60 0.1787 0.9733
0.3954 12.91 65 0.1787 0.9733
0.3954 13.91 70 0.1787 0.9733
0.3954 14.91 75 0.1787 0.9733
0.3926 15.91 80 0.1787 0.9733
0.3926 16.91 85 0.1787 0.9733
0.3926 17.91 90 0.1787 0.9733
0.3926 18.91 95 0.1787 0.9733
0.3801 19.91 100 0.1787 0.9733
0.3801 20.91 105 0.1787 0.9733
0.3801 21.91 110 0.1787 0.9733
0.3801 22.91 115 0.1787 0.9733
0.3815 23.91 120 0.1787 0.9733
0.3815 24.91 125 0.1787 0.9733
0.3815 25.91 130 0.1787 0.9733
0.3815 26.91 135 0.1787 0.9733
0.3955 27.91 140 0.1787 0.9733
0.3955 28.91 145 0.1787 0.9733
0.3955 29.91 150 0.1787 0.9733
0.3955 30.91 155 0.1787 0.9733
0.3854 31.91 160 0.1787 0.9733
0.3854 32.91 165 0.1787 0.9733
0.3854 33.91 170 0.1787 0.9733
0.3854 34.91 175 0.1787 0.9733
0.3949 35.91 180 0.1787 0.9733
0.3949 36.91 185 0.1787 0.9733
0.3949 37.91 190 0.1787 0.9733
0.3949 38.91 195 0.1787 0.9733
0.423 39.91 200 0.1787 0.9733
0.423 40.91 205 0.1787 0.9733
0.423 41.91 210 0.1787 0.9733
0.423 42.91 215 0.1787 0.9733
0.3761 43.91 220 0.1787 0.9733
0.3761 44.91 225 0.1787 0.9733
0.3761 45.91 230 0.1787 0.9733
0.3761 46.91 235 0.1787 0.9733
0.3673 47.91 240 0.1787 0.9733
0.3673 48.91 245 0.1787 0.9733
0.3673 49.91 250 0.1787 0.9733
0.3673 50.91 255 0.1787 0.9733
0.3639 51.91 260 0.1787 0.9733
0.3639 52.91 265 0.1787 0.9733
0.3639 53.91 270 0.1787 0.9733
0.3639 54.91 275 0.1787 0.9733
0.4031 55.91 280 0.1787 0.9733
0.4031 56.91 285 0.1787 0.9733
0.4031 57.91 290 0.1787 0.9733
0.4031 58.91 295 0.1787 0.9733
0.3787 59.91 300 0.1787 0.9733

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2