metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9814814814814815
delivery_truck_classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1169
- Accuracy: 0.9815
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8 | 3 | 0.1169 | 0.9815 |
No log | 1.8 | 6 | 0.1169 | 0.9815 |
No log | 2.8 | 9 | 0.1169 | 0.9815 |
No log | 3.8 | 12 | 0.1169 | 0.9815 |
No log | 4.8 | 15 | 0.1169 | 0.9815 |
No log | 5.8 | 18 | 0.1169 | 0.9815 |
0.3448 | 6.8 | 21 | 0.1169 | 0.9815 |
0.3448 | 7.8 | 24 | 0.1169 | 0.9815 |
0.3448 | 8.8 | 27 | 0.1169 | 0.9815 |
0.3448 | 9.8 | 30 | 0.1169 | 0.9815 |
0.3448 | 10.8 | 33 | 0.1169 | 0.9815 |
0.3448 | 11.8 | 36 | 0.1169 | 0.9815 |
0.3448 | 12.8 | 39 | 0.1169 | 0.9815 |
0.3344 | 13.8 | 42 | 0.1169 | 0.9815 |
0.3344 | 14.8 | 45 | 0.1169 | 0.9815 |
0.3344 | 15.8 | 48 | 0.1169 | 0.9815 |
0.3344 | 16.8 | 51 | 0.1169 | 0.9815 |
0.3344 | 17.8 | 54 | 0.1169 | 0.9815 |
0.3344 | 18.8 | 57 | 0.1169 | 0.9815 |
0.3274 | 19.8 | 60 | 0.1169 | 0.9815 |
0.3274 | 20.8 | 63 | 0.1169 | 0.9815 |
0.3274 | 21.8 | 66 | 0.1169 | 0.9815 |
0.3274 | 22.8 | 69 | 0.1169 | 0.9815 |
0.3274 | 23.8 | 72 | 0.1169 | 0.9815 |
0.3274 | 24.8 | 75 | 0.1169 | 0.9815 |
0.3274 | 25.8 | 78 | 0.1169 | 0.9815 |
0.3426 | 26.8 | 81 | 0.1169 | 0.9815 |
0.3426 | 27.8 | 84 | 0.1169 | 0.9815 |
0.3426 | 28.8 | 87 | 0.1169 | 0.9815 |
0.3426 | 29.8 | 90 | 0.1169 | 0.9815 |
0.3426 | 30.8 | 93 | 0.1169 | 0.9815 |
0.3426 | 31.8 | 96 | 0.1169 | 0.9815 |
0.3426 | 32.8 | 99 | 0.1169 | 0.9815 |
0.3436 | 33.8 | 102 | 0.1169 | 0.9815 |
0.3436 | 34.8 | 105 | 0.1169 | 0.9815 |
0.3436 | 35.8 | 108 | 0.1169 | 0.9815 |
0.3436 | 36.8 | 111 | 0.1169 | 0.9815 |
0.3436 | 37.8 | 114 | 0.1169 | 0.9815 |
0.3436 | 38.8 | 117 | 0.1169 | 0.9815 |
0.3243 | 39.8 | 120 | 0.1169 | 0.9815 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2