JEdward7777's picture
update model card README.md
8eb6b09
|
raw
history blame
4.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9814814814814815

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1169
  • Accuracy: 0.9815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 3 0.1169 0.9815
No log 1.8 6 0.1169 0.9815
No log 2.8 9 0.1169 0.9815
No log 3.8 12 0.1169 0.9815
No log 4.8 15 0.1169 0.9815
No log 5.8 18 0.1169 0.9815
0.3448 6.8 21 0.1169 0.9815
0.3448 7.8 24 0.1169 0.9815
0.3448 8.8 27 0.1169 0.9815
0.3448 9.8 30 0.1169 0.9815
0.3448 10.8 33 0.1169 0.9815
0.3448 11.8 36 0.1169 0.9815
0.3448 12.8 39 0.1169 0.9815
0.3344 13.8 42 0.1169 0.9815
0.3344 14.8 45 0.1169 0.9815
0.3344 15.8 48 0.1169 0.9815
0.3344 16.8 51 0.1169 0.9815
0.3344 17.8 54 0.1169 0.9815
0.3344 18.8 57 0.1169 0.9815
0.3274 19.8 60 0.1169 0.9815
0.3274 20.8 63 0.1169 0.9815
0.3274 21.8 66 0.1169 0.9815
0.3274 22.8 69 0.1169 0.9815
0.3274 23.8 72 0.1169 0.9815
0.3274 24.8 75 0.1169 0.9815
0.3274 25.8 78 0.1169 0.9815
0.3426 26.8 81 0.1169 0.9815
0.3426 27.8 84 0.1169 0.9815
0.3426 28.8 87 0.1169 0.9815
0.3426 29.8 90 0.1169 0.9815
0.3426 30.8 93 0.1169 0.9815
0.3426 31.8 96 0.1169 0.9815
0.3426 32.8 99 0.1169 0.9815
0.3436 33.8 102 0.1169 0.9815
0.3436 34.8 105 0.1169 0.9815
0.3436 35.8 108 0.1169 0.9815
0.3436 36.8 111 0.1169 0.9815
0.3436 37.8 114 0.1169 0.9815
0.3436 38.8 117 0.1169 0.9815
0.3243 39.8 120 0.1169 0.9815

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2