metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
delivery_truck_classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0290
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.94 | 4 | 1.9124 | 0.1864 |
No log | 1.94 | 8 | 1.8095 | 0.2373 |
No log | 2.94 | 12 | 1.6757 | 0.3898 |
No log | 3.94 | 16 | 1.4906 | 0.5254 |
1.8286 | 4.94 | 20 | 1.2704 | 0.6441 |
1.8286 | 5.94 | 24 | 1.0685 | 0.6780 |
1.8286 | 6.94 | 28 | 0.8032 | 0.7458 |
1.8286 | 7.94 | 32 | 0.6309 | 0.7627 |
1.8286 | 8.94 | 36 | 0.4989 | 0.8475 |
0.9342 | 9.94 | 40 | 0.4063 | 0.8475 |
0.9342 | 10.94 | 44 | 0.2692 | 0.9153 |
0.9342 | 11.94 | 48 | 0.2736 | 0.8983 |
0.9342 | 12.94 | 52 | 0.2116 | 0.9322 |
0.9342 | 13.94 | 56 | 0.1498 | 0.9831 |
0.5151 | 14.94 | 60 | 0.1906 | 0.9153 |
0.5151 | 15.94 | 64 | 0.1698 | 0.9492 |
0.5151 | 16.94 | 68 | 0.1432 | 0.9492 |
0.5151 | 17.94 | 72 | 0.1682 | 0.9322 |
0.5151 | 18.94 | 76 | 0.1069 | 0.9831 |
0.4009 | 19.94 | 80 | 0.0821 | 0.9831 |
0.4009 | 20.94 | 84 | 0.0903 | 0.9831 |
0.4009 | 21.94 | 88 | 0.1281 | 0.9661 |
0.4009 | 22.94 | 92 | 0.0936 | 0.9831 |
0.4009 | 23.94 | 96 | 0.1059 | 0.9661 |
0.3482 | 24.94 | 100 | 0.1431 | 0.9492 |
0.3482 | 25.94 | 104 | 0.0899 | 0.9661 |
0.3482 | 26.94 | 108 | 0.0689 | 0.9661 |
0.3482 | 27.94 | 112 | 0.0751 | 0.9661 |
0.3482 | 28.94 | 116 | 0.0891 | 0.9661 |
0.3306 | 29.94 | 120 | 0.0523 | 0.9831 |
0.3306 | 30.94 | 124 | 0.0734 | 0.9831 |
0.3306 | 31.94 | 128 | 0.0746 | 0.9831 |
0.3306 | 32.94 | 132 | 0.0474 | 0.9661 |
0.3306 | 33.94 | 136 | 0.0443 | 0.9831 |
0.2871 | 34.94 | 140 | 0.0814 | 0.9831 |
0.2871 | 35.94 | 144 | 0.0691 | 0.9831 |
0.2871 | 36.94 | 148 | 0.0531 | 0.9831 |
0.2871 | 37.94 | 152 | 0.0614 | 0.9831 |
0.2871 | 38.94 | 156 | 0.0578 | 0.9831 |
0.2754 | 39.94 | 160 | 0.0520 | 0.9831 |
0.2754 | 40.94 | 164 | 0.0537 | 0.9831 |
0.2754 | 41.94 | 168 | 0.0447 | 0.9831 |
0.2754 | 42.94 | 172 | 0.0290 | 1.0 |
0.2754 | 43.94 | 176 | 0.0291 | 1.0 |
0.269 | 44.94 | 180 | 0.0326 | 0.9831 |
0.269 | 45.94 | 184 | 0.0330 | 0.9831 |
0.269 | 46.94 | 188 | 0.0348 | 0.9831 |
0.269 | 47.94 | 192 | 0.0347 | 0.9831 |
0.269 | 48.94 | 196 | 0.0347 | 0.9831 |
0.2615 | 49.94 | 200 | 0.0424 | 0.9831 |
0.2615 | 50.94 | 204 | 0.0451 | 0.9831 |
0.2615 | 51.94 | 208 | 0.0433 | 0.9831 |
0.2615 | 52.94 | 212 | 0.0352 | 0.9831 |
0.2615 | 53.94 | 216 | 0.0339 | 0.9831 |
0.2386 | 54.94 | 220 | 0.0339 | 0.9831 |
0.2386 | 55.94 | 224 | 0.0339 | 0.9831 |
0.2386 | 56.94 | 228 | 0.0348 | 0.9831 |
0.2386 | 57.94 | 232 | 0.0366 | 0.9831 |
0.2386 | 58.94 | 236 | 0.0374 | 0.9831 |
0.2362 | 59.94 | 240 | 0.0375 | 0.9831 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2