metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: delivery_truck_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9846153846153847
delivery_truck_classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1296
- Accuracy: 0.9846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.84 | 4 | 1.8199 | 0.3231 |
No log | 1.84 | 8 | 1.7275 | 0.4154 |
No log | 2.84 | 12 | 1.6281 | 0.4615 |
No log | 3.84 | 16 | 1.5272 | 0.4615 |
1.9537 | 4.84 | 20 | 1.3668 | 0.5077 |
1.9537 | 5.84 | 24 | 1.0964 | 0.6 |
1.9537 | 6.84 | 28 | 0.7691 | 0.7846 |
1.9537 | 7.84 | 32 | 0.6370 | 0.8308 |
1.9537 | 8.84 | 36 | 0.4329 | 0.9077 |
1.0682 | 9.84 | 40 | 0.3518 | 0.9077 |
1.0682 | 10.84 | 44 | 0.3229 | 0.8923 |
1.0682 | 11.84 | 48 | 0.2324 | 0.9385 |
1.0682 | 12.84 | 52 | 0.2369 | 0.9385 |
1.0682 | 13.84 | 56 | 0.2119 | 0.9385 |
0.6335 | 14.84 | 60 | 0.1805 | 0.9385 |
0.6335 | 15.84 | 64 | 0.2135 | 0.9077 |
0.6335 | 16.84 | 68 | 0.1889 | 0.9231 |
0.6335 | 17.84 | 72 | 0.1601 | 0.9538 |
0.6335 | 18.84 | 76 | 0.1412 | 0.9692 |
0.5133 | 19.84 | 80 | 0.1497 | 0.9538 |
0.5133 | 20.84 | 84 | 0.1545 | 0.9538 |
0.5133 | 21.84 | 88 | 0.1298 | 0.9538 |
0.5133 | 22.84 | 92 | 0.1415 | 0.9538 |
0.5133 | 23.84 | 96 | 0.1685 | 0.9231 |
0.4383 | 24.84 | 100 | 0.1381 | 0.9385 |
0.4383 | 25.84 | 104 | 0.1296 | 0.9846 |
0.4383 | 26.84 | 108 | 0.1107 | 0.9538 |
0.4383 | 27.84 | 112 | 0.1237 | 0.9385 |
0.4383 | 28.84 | 116 | 0.1366 | 0.9538 |
0.4149 | 29.84 | 120 | 0.1349 | 0.9692 |
0.4149 | 30.84 | 124 | 0.1046 | 0.9846 |
0.4149 | 31.84 | 128 | 0.0882 | 0.9846 |
0.4149 | 32.84 | 132 | 0.1022 | 0.9846 |
0.4149 | 33.84 | 136 | 0.1207 | 0.9692 |
0.3657 | 34.84 | 140 | 0.1168 | 0.9538 |
0.3657 | 35.84 | 144 | 0.0922 | 0.9846 |
0.3657 | 36.84 | 148 | 0.0931 | 0.9846 |
0.3657 | 37.84 | 152 | 0.1006 | 0.9692 |
0.3657 | 38.84 | 156 | 0.0987 | 0.9692 |
0.3294 | 39.84 | 160 | 0.1128 | 0.9692 |
0.3294 | 40.84 | 164 | 0.1152 | 0.9538 |
0.3294 | 41.84 | 168 | 0.0997 | 0.9538 |
0.3294 | 42.84 | 172 | 0.0968 | 0.9692 |
0.3294 | 43.84 | 176 | 0.0819 | 0.9846 |
0.3198 | 44.84 | 180 | 0.0729 | 0.9846 |
0.3198 | 45.84 | 184 | 0.0744 | 0.9846 |
0.3198 | 46.84 | 188 | 0.0951 | 0.9692 |
0.3198 | 47.84 | 192 | 0.0966 | 0.9692 |
0.3198 | 48.84 | 196 | 0.0833 | 0.9846 |
0.2936 | 49.84 | 200 | 0.0694 | 0.9846 |
0.2936 | 50.84 | 204 | 0.0691 | 0.9846 |
0.2936 | 51.84 | 208 | 0.0736 | 0.9846 |
0.2936 | 52.84 | 212 | 0.0805 | 0.9692 |
0.2936 | 53.84 | 216 | 0.0801 | 0.9846 |
0.3127 | 54.84 | 220 | 0.0826 | 0.9846 |
0.3127 | 55.84 | 224 | 0.0857 | 0.9692 |
0.3127 | 56.84 | 228 | 0.0864 | 0.9846 |
0.3127 | 57.84 | 232 | 0.0878 | 0.9846 |
0.3127 | 58.84 | 236 | 0.0877 | 0.9846 |
0.285 | 59.84 | 240 | 0.0874 | 0.9846 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2