JEdward7777's picture
update model card README.md
d451c07
|
raw
history blame
5.46 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9846153846153847

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1296
  • Accuracy: 0.9846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.84 4 1.8199 0.3231
No log 1.84 8 1.7275 0.4154
No log 2.84 12 1.6281 0.4615
No log 3.84 16 1.5272 0.4615
1.9537 4.84 20 1.3668 0.5077
1.9537 5.84 24 1.0964 0.6
1.9537 6.84 28 0.7691 0.7846
1.9537 7.84 32 0.6370 0.8308
1.9537 8.84 36 0.4329 0.9077
1.0682 9.84 40 0.3518 0.9077
1.0682 10.84 44 0.3229 0.8923
1.0682 11.84 48 0.2324 0.9385
1.0682 12.84 52 0.2369 0.9385
1.0682 13.84 56 0.2119 0.9385
0.6335 14.84 60 0.1805 0.9385
0.6335 15.84 64 0.2135 0.9077
0.6335 16.84 68 0.1889 0.9231
0.6335 17.84 72 0.1601 0.9538
0.6335 18.84 76 0.1412 0.9692
0.5133 19.84 80 0.1497 0.9538
0.5133 20.84 84 0.1545 0.9538
0.5133 21.84 88 0.1298 0.9538
0.5133 22.84 92 0.1415 0.9538
0.5133 23.84 96 0.1685 0.9231
0.4383 24.84 100 0.1381 0.9385
0.4383 25.84 104 0.1296 0.9846
0.4383 26.84 108 0.1107 0.9538
0.4383 27.84 112 0.1237 0.9385
0.4383 28.84 116 0.1366 0.9538
0.4149 29.84 120 0.1349 0.9692
0.4149 30.84 124 0.1046 0.9846
0.4149 31.84 128 0.0882 0.9846
0.4149 32.84 132 0.1022 0.9846
0.4149 33.84 136 0.1207 0.9692
0.3657 34.84 140 0.1168 0.9538
0.3657 35.84 144 0.0922 0.9846
0.3657 36.84 148 0.0931 0.9846
0.3657 37.84 152 0.1006 0.9692
0.3657 38.84 156 0.0987 0.9692
0.3294 39.84 160 0.1128 0.9692
0.3294 40.84 164 0.1152 0.9538
0.3294 41.84 168 0.0997 0.9538
0.3294 42.84 172 0.0968 0.9692
0.3294 43.84 176 0.0819 0.9846
0.3198 44.84 180 0.0729 0.9846
0.3198 45.84 184 0.0744 0.9846
0.3198 46.84 188 0.0951 0.9692
0.3198 47.84 192 0.0966 0.9692
0.3198 48.84 196 0.0833 0.9846
0.2936 49.84 200 0.0694 0.9846
0.2936 50.84 204 0.0691 0.9846
0.2936 51.84 208 0.0736 0.9846
0.2936 52.84 212 0.0805 0.9692
0.2936 53.84 216 0.0801 0.9846
0.3127 54.84 220 0.0826 0.9846
0.3127 55.84 224 0.0857 0.9692
0.3127 56.84 228 0.0864 0.9846
0.3127 57.84 232 0.0878 0.9846
0.3127 58.84 236 0.0877 0.9846
0.285 59.84 240 0.0874 0.9846

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2