🌟 Buying me coffee is a direct way to show support for this project.

distilbert-base-german-cased_finetuned_ai4privacy_v2

This model is a fine-tuned version of distilbert-base-german-cased on the German subset of pii-masking-200k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0821
  • Overall Precision: 0.9086
  • Overall Recall: 0.9379
  • Overall F1: 0.9230
  • Overall Accuracy: 0.9679

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Accountname F1 Accountnumber F1 Age F1 Amount F1 Bic F1 Bitcoinaddress F1 Buildingnumber F1 City F1 Companyname F1 County F1 Creditcardcvv F1 Creditcardissuer F1 Creditcardnumber F1 Currency F1 Currencycode F1 Currencyname F1 Currencysymbol F1 Date F1 Dob F1 Email F1 Ethereumaddress F1 Eyecolor F1 Firstname F1 Gender F1 Height F1 Iban F1 Ip F1 Ipv4 F1 Ipv6 F1 Jobarea F1 Jobtitle F1 Jobtype F1 Lastname F1 Litecoinaddress F1 Mac F1 Maskednumber F1 Middlename F1 Nearbygpscoordinate F1 Ordinaldirection F1 Password F1 Phoneimei F1 Phonenumber F1 Pin F1 Prefix F1 Secondaryaddress F1 Sex F1 Ssn F1 State F1 Street F1 Time F1 Url F1 Useragent F1 Username F1 Vehiclevin F1 Vehiclevrm F1 Zipcode F1
0.1449 1.0 5282 0.1365 0.8213 0.8741 0.8469 0.9504 0.9954 0.9180 0.9509 0.7478 0.8315 0.8265 0.7908 0.8030 0.9011 0.9118 0.8669 0.9831 0.8053 0.4935 0.6482 0.0 0.8430 0.7672 0.4751 0.9870 0.9103 0.9501 0.8810 0.9552 0.9507 0.9086 0.0 0.8124 0.7776 0.8698 0.9758 0.9445 0.8140 0.5210 0.9819 0.6555 0.4114 1.0 0.9837 0.8093 0.9761 0.9254 0.7705 0.8613 0.9676 0.9978 0.9570 0.8585 0.8164 0.9643 0.9879 0.9534 0.9415 0.8778 0.9716 0.7313
0.1039 2.0 10564 0.0841 0.8875 0.9213 0.9041 0.9649 0.9923 0.9598 0.9721 0.8979 0.9240 0.9218 0.8937 0.8803 0.9648 0.9595 0.9563 0.9848 0.8427 0.5724 0.7677 0.2210 0.9244 0.8003 0.5866 0.9932 0.9636 0.9835 0.9473 0.9794 0.9753 0.9644 0.0173 0.7042 0.7564 0.9439 0.9911 0.9710 0.8988 0.7288 0.9801 0.7913 0.8977 0.9978 0.9853 0.9581 0.9937 0.9761 0.9146 0.9166 0.9741 0.9978 0.9787 0.9448 0.9031 0.9591 0.9968 0.9638 0.9719 0.9455 0.9829 0.8863
0.0804 3.0 15846 0.0821 0.9086 0.9379 0.9230 0.9679 0.9985 0.9849 0.9792 0.9387 0.9641 0.9637 0.9011 0.9260 0.9782 0.9778 0.9543 1.0 0.8796 0.7027 0.8328 0.3466 0.9420 0.8156 0.6575 0.9971 0.9947 0.9833 0.9614 0.9881 0.9842 0.9819 0.2023 0.6631 0.7243 0.9722 0.9904 0.9725 0.9185 0.8545 0.9780 0.8365 0.9156 1.0 0.9853 0.9782 0.9947 0.9883 0.9189 0.9594 0.9831 0.9993 0.9898 0.9739 0.9355 0.9764 0.9984 0.9885 0.9798 0.9614 1.0 0.9100
0.0622 4.0 21128 0.0848 0.9095 0.9420 0.9255 0.9713 0.9977 0.9932 0.9815 0.9566 0.9550 0.9704 0.9187 0.9277 0.9735 0.9756 0.9679 0.9966 0.8885 0.6985 0.8598 0.4217 0.9602 0.8262 0.6809 0.9960 0.9947 0.9852 0.9641 0.9952 0.9955 0.9909 0.3053 0.7067 0.6156 0.9784 0.9948 0.9773 0.9176 0.8856 0.9880 0.8598 0.9186 1.0 0.9886 0.9871 0.9968 0.9916 0.9419 0.9621 0.9887 1.0 0.9926 0.9717 0.9441 0.9835 0.9992 0.9858 0.9838 0.9818 0.9856 0.8972
0.032 5.0 26410 0.0998 0.9210 0.9497 0.9351 0.9741 0.9985 0.9962 0.9847 0.9622 0.9614 0.9738 0.9269 0.9431 0.9782 0.9749 0.9708 0.9949 0.8990 0.7116 0.8447 0.4615 0.9646 0.8296 0.7235 0.9966 0.9947 0.9853 0.9672 0.9929 0.9932 0.9919 0.3706 0.7690 0.6836 0.9838 0.9941 0.9789 0.9252 0.8876 0.9960 0.8849 0.9172 1.0 0.9886 0.9847 0.9958 0.9925 0.9483 0.9700 0.9912 1.0 0.9944 0.9756 0.9468 0.99 0.9984 0.9947 0.9806 0.9939 1.0 0.9108

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
738
Safetensors
Model size
66.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Isotonic/distilbert-base-german-cased_finetuned_ai4privacy_v2

Quantized
(1)
this model

Datasets used to train Isotonic/distilbert-base-german-cased_finetuned_ai4privacy_v2