lvkaokao's picture
update README.md.
5e9b52d
|
raw
history blame
1.17 kB
---
license: mit
tags:
- int8
- Intel® Neural Compressor
- PostTrainingStatic
datasets:
- mnli
metrics:
- accuracy
---
# INT8 RoBERT large finetuned on MNLI
### Post-training static quantization
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [roberta-large-mnli](https://huggingface.co/roberta-large-mnli).
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104.
The linear modules **roberta.encoder.layer.16.output.dense**, **roberta.encoder.layer.17.output.dense**, **roberta.encoder.layer.18.output.dense**, fall back to fp32 for less than 1% relative accuracy loss.
### Evaluation result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-acc)** |89.8624|90.5960|
| **Model size (MB)** |381M|1.4G|
### Load with Intel® Neural Compressor:
```python
from neural_compressor.utils.load_huggingface import OptimizedModel
int8_model = OptimizedModel.from_pretrained(
'Intel/roberta-base-squad2-int8-static',
)
```