Added demo code according to the prompt format
#5
by
macadeliccc
- opened
README.md
CHANGED
@@ -52,11 +52,36 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
## Inference with transformers
|
54 |
|
55 |
-
```
|
56 |
import transformers
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
```
|
61 |
|
62 |
## Ethical Considerations and Limitations
|
|
|
52 |
|
53 |
## Inference with transformers
|
54 |
|
55 |
+
```python
|
56 |
import transformers
|
57 |
+
|
58 |
+
|
59 |
+
model_name = 'Intel/neural-chat-7b-v3-1'
|
60 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
61 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
62 |
+
|
63 |
+
|
64 |
+
def generate_response(system_input, user_input):
|
65 |
+
|
66 |
+
# Format the input using the provided template
|
67 |
+
prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n"
|
68 |
+
|
69 |
+
# Tokenize and encode the prompt
|
70 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
71 |
+
|
72 |
+
# Generate a response
|
73 |
+
outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
|
74 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
+
|
76 |
+
# Extract only the assistant's response
|
77 |
+
return response.split("### Assistant:\n")[-1]
|
78 |
+
|
79 |
+
|
80 |
+
# Example usage
|
81 |
+
system_input = "You are a chatbot developed by Intel. Please answer all questions to the best of your ability."
|
82 |
+
user_input = "How does the neural-chat-7b-v3-1 model work?"
|
83 |
+
response = generate_response(system_input, user_input)
|
84 |
+
print(response)
|
85 |
```
|
86 |
|
87 |
## Ethical Considerations and Limitations
|