GGUF files for Magic-Dolphin-7b
Magic-Dolphin-7b
For fp16 files please look here
A linear merge of:
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Locutusque/Hyperion-1.5-Mistral-7B
- ibm/merlinite-7b
These three models showed excellent acumen in technical topics so I wanted to see how they would behave together in a merge. Several different ratios were tested before this release, in the end a higher weighting for merlinite-7b helped smooth out some edges. This model is a test of how LAB tuning is impacted by merges with models leveraging DPO.
Benchmark Performance
Name | Avg. | ARC | HellaSwag | MMLU | TruthfulQA | Winograde | GSM8K |
---|---|---|---|---|---|---|---|
Magic-Dolphin-7b | 67.48 | 65.78 | 85.61 | 64.64 | 58.01 | 79.64 | 51.18 |
dolphin-2.6-mistral-7b-dpo-laser | 67.28 | 66.3 | 85.73 | 63.16 | 61.71 | 79.16 | 47.61 |
merlinite-7b | N/A | 63.99 | 84.37 | 64.88 | N/A | 78.24 | N/A |
Hyperion-1.5-Mistral-7B | 61.43 | 60.49 | 83.64 | 63.57 | 41.78 | 78.61 | 40.49 |
This was my first experiment with merging models so any feedback is greatly appreciated.
Uses Alpaca template.
Sample Question
Merge Details
Merge Method
This model was merged using the linear merge method.
Models Merged
The following models were included in the merge:
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Locutusque/Hyperion-1.5-Mistral-7B
- ibm/merlinite-7b
Configuration
The following YAML configuration was used to produce this model:
models:
- model: models/dolphin-2.6-mistral-7b-dpo-laser
parameters:
weight: 1.0
- model: models/Hyperion-1.5-Mistral-7B
parameters:
weight: 0.3
- model: models/merlinite-7b
parameters:
weight: 0.5
merge_method: linear
dtype: float16
- Downloads last month
- 8
Collection including InferenceIllusionist/Magic-Dolphin-7b-GGUF
Collection
I take requests, feel free to drop me a line in the community posts
•
40 items
•
Updated
•
2