Ilyes's picture
add new model
35b867b
|
raw
history blame
2.75 kB
metadata
language: fr
datasets:
  - common_voice
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: wav2vec2-large-xlsr-53-French by Ilyes Rebai
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice
          args: fr
        metrics:
          - name: Test WER
            type: wer
            value: 20.89%

Evaluation on Common Voice FR Test

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
)
import re

model_name = "Ilyes/wav2vec2-large-xlsr-53-french"



model = Wav2Vec2ForCTC.from_pretrained(model_name).to('cuda')
processor = Wav2Vec2Processor.from_pretrained(model_name)

ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr")




chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�\\\\‘\\\\’\\\\’\\\\’\\\\‘\\\\…\\\\·\\\\!\\\\ǃ\\\\?\\\\«\\\\‹\\\\»\\\\›“\\\\”\\\\\\\\ʿ\\\\ʾ\\\\„\\\\∞\\\\\\\\|\\\\.\\\\,\\\\;\\\\:\\\\*\\\\—\\\\–\\\\─\\\\―\\\\_\\\\/\\\\:\\\\ː\\\\;\\\\,\\\\=\\\\«\\\\»\\\\→]'
def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    return batch
    
ds = ds.map(map_to_array)

resampler = torchaudio.transforms.Resample(48_000, 16_000)
def map_to_pred(batch):
    features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)
    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["predicted"] = processor.batch_decode(pred_ids)
    batch["target"] = batch["sentence"]
    return batch
    
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))

Training

6% of the Common Voice train, validation datasets (20K files) were used for training.

Testing

All the Common Voice Test dataset (15763 files) were used for testing.

Results:

WER=20.89%

SER=77.56%

New Model (v2)

~10% of the Common Voice train, validation datasets (30K files) were used for training.

Results:

WER=18.81%

SER=73.82%