Model description

XLM-RoBERTa is a multilingual version of RoBERTa developed by Facebook AI. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It is an extension of RoBERTa, which is itself a variant of the BERT model. XLM-RoBERTa is designed to handle multiple languages and demonstrate strong performance across a wide range of tasks, making it highly useful for multilingual natural language processing (NLP) applications.

Language model: xlm-roberta-base
Language: English
Downstream-task: Question-Answering
Training data: Train-set SQuAD 2.0
Evaluation data: Evaluation-set SQuAD 2.0
Hardware Accelerator used: GPU Tesla T4

Intended uses & limitations

Multilingual Question-Answering

For Question-Answering in English-

!pip install transformers
from transformers import pipeline
model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
question_answerer = pipeline("question-answering", model=model_checkpoint)

context = """
The Statue of Unity is the world's tallest statue, with a height of 182 metres (597 feet), located near Kevadia in the state of Gujarat, India.
"""

question = "What is the height of statue of Unity?"
question_answerer(question=question, context=context)

For Question-Answering in Hindi-

!pip install transformers
from transformers import pipeline
model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
question_answerer = pipeline("question-answering", model=model_checkpoint)

context = """
स्टैच्यू ऑफ यूनिटी दुनिया की सबसे ऊंची प्रतिमा है, जिसकी ऊंचाई 182 मीटर (597 फीट) है, जो भारत के गुजरात राज्य में केवडिया के पास स्थित है।
"""

question = "स्टैच्यू ऑफ यूनिटी की ऊंचाई कितनी है?"
question_answerer(question=question, context=context)

For Question-Answering in Spanish-

!pip install transformers
from transformers import pipeline
model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
question_answerer = pipeline("question-answering", model=model_checkpoint)

context = """
La Estatua de la Unidad es la estatua más alta del mundo, con una altura de 182 metros (597 pies), ubicada cerca de Kevadia en el estado de Gujarat, India.
"""

question = "¿Cuál es la altura de la estatua de la Unidad?"
question_answerer(question=question, context=context)

Results

Evaluation on SQuAD 2.0 validation dataset:

 exact: 75.51587635812348,
 f1: 78.7328391907263,
 total: 11873,
 HasAns_exact: 73.00944669365722,
 HasAns_f1: 79.45259779208723,
 HasAns_total: 5928,
 NoAns_exact: 78.01513877207738,
 NoAns_f1: 78.01513877207738,
 NoAns_total: 5945,
 best_exact: 75.51587635812348,
 best_exact_thresh: 0.999241054058075,
 best_f1: 78.73283919072665,
 best_f1_thresh: 0.999241054058075,
 total_time_in_seconds: 218.97641910400125,
 samples_per_second: 54.220450076686134,
 latency_in_seconds: 0.018443225730986376

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.0539 1.0 8333 0.9962
0.8013 2.0 16666 0.8910
0.5918 3.0 24999 0.9802

This model is a fine-tuned version of xlm-roberta-base on the squad_v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9802

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
40
Safetensors
Model size
277M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for IProject-10/xlm-roberta-base-finetuned-squad2

Finetuned
(2719)
this model
Finetunes
3 models

Dataset used to train IProject-10/xlm-roberta-base-finetuned-squad2

Space using IProject-10/xlm-roberta-base-finetuned-squad2 1