sft_2500_mcq

This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the heat_transfer_2500_mcq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 24
  • total_eval_batch_size: 24
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.4936 0.1064 10 0.0136
0.0065 0.2128 20 0.0044
0.0039 0.3191 30 0.0036
0.0036 0.4255 40 0.0035
0.0034 0.5319 50 0.0034
0.0033 0.6383 60 0.0033
0.0033 0.7447 70 0.0033
0.0033 0.8511 80 0.0033
0.0033 0.9574 90 0.0033

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Howard881010/heat_transfer_sft_2500_mcq