sft_2500_mcq
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the heat_transfer_2500_mcq dataset. It achieves the following results on the evaluation set:
- Loss: 0.0033
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 24
- total_eval_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4936 | 0.1064 | 10 | 0.0136 |
0.0065 | 0.2128 | 20 | 0.0044 |
0.0039 | 0.3191 | 30 | 0.0036 |
0.0036 | 0.4255 | 40 | 0.0035 |
0.0034 | 0.5319 | 50 | 0.0034 |
0.0033 | 0.6383 | 60 | 0.0033 |
0.0033 | 0.7447 | 70 | 0.0033 |
0.0033 | 0.8511 | 80 | 0.0033 |
0.0033 | 0.9574 | 90 | 0.0033 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for Howard881010/heat_transfer_sft_2500_mcq
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407