dpo_p
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the heat_transfer_dpo_p dataset. It achieves the following results on the evaluation set:
- Loss: 0.1692
- Rewards/chosen: 0.0877
- Rewards/rejected: -4.1618
- Rewards/accuracies: 0.9435
- Rewards/margins: 4.2496
- Logps/chosen: -3.6031
- Logps/rejected: -46.4845
- Logits/chosen: -1.1815
- Logits/rejected: -1.2052
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 7
- eval_batch_size: 7
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 14
- total_eval_batch_size: 14
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/chosen | Logps/rejected | Logits/chosen | Logits/rejected |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6888 | 0.0933 | 60 | 0.7026 | 0.0852 | 0.0954 | 0.4722 | -0.0102 | -3.6290 | -3.9127 | -1.3205 | -1.3206 |
0.6874 | 0.1866 | 120 | 0.6799 | -0.0264 | -0.0577 | 0.5853 | 0.0313 | -4.7445 | -5.4437 | -1.3197 | -1.3201 |
0.6277 | 0.2799 | 180 | 0.6050 | -0.0526 | -0.3283 | 0.6865 | 0.2757 | -5.0064 | -8.1496 | -1.3104 | -1.3121 |
0.6972 | 0.3733 | 240 | 0.6916 | 0.2062 | 0.0775 | 0.5645 | 0.1287 | -2.4188 | -4.0918 | -1.3059 | -1.3064 |
0.5403 | 0.4666 | 300 | 0.5434 | -0.0861 | -0.7153 | 0.7351 | 0.6292 | -5.3416 | -12.0196 | -1.3176 | -1.3214 |
0.4851 | 0.5599 | 360 | 0.4736 | 0.0745 | -0.6669 | 0.7738 | 0.7414 | -3.7352 | -11.5354 | -1.3169 | -1.3211 |
0.5212 | 0.6532 | 420 | 0.4008 | 0.1432 | -0.9171 | 0.8403 | 1.0603 | -3.0484 | -14.0373 | -1.3134 | -1.3191 |
0.2776 | 0.7465 | 480 | 0.3285 | 0.1142 | -1.6779 | 0.8512 | 1.7921 | -3.3384 | -21.6450 | -1.2922 | -1.3021 |
0.351 | 0.8398 | 540 | 0.2724 | 0.1235 | -2.0395 | 0.8770 | 2.1629 | -3.2460 | -25.2612 | -1.2861 | -1.2980 |
0.3464 | 0.9331 | 600 | 0.2994 | 0.0036 | -2.1200 | 0.8700 | 2.1236 | -4.4449 | -26.0666 | -1.2775 | -1.2895 |
0.1758 | 1.0264 | 660 | 0.2081 | 0.1320 | -2.7773 | 0.9137 | 2.9092 | -3.1609 | -32.6392 | -1.2568 | -1.2733 |
0.1554 | 1.1198 | 720 | 0.1848 | 0.0998 | -3.1629 | 0.9246 | 3.2628 | -3.4824 | -36.4958 | -1.2340 | -1.2530 |
0.1542 | 1.2131 | 780 | 0.1818 | 0.0788 | -3.7795 | 0.9345 | 3.8583 | -3.6926 | -42.6612 | -1.2215 | -1.2440 |
0.1354 | 1.3064 | 840 | 0.2401 | 0.0439 | -3.8429 | 0.9147 | 3.8868 | -4.0414 | -43.2950 | -1.2040 | -1.2276 |
0.2017 | 1.3997 | 900 | 0.2583 | 0.0451 | -3.7989 | 0.9147 | 3.8440 | -4.0291 | -42.8554 | -1.2056 | -1.2287 |
0.1909 | 1.4930 | 960 | 0.1759 | 0.0940 | -3.8068 | 0.9395 | 3.9008 | -3.5403 | -42.9342 | -1.2013 | -1.2244 |
0.1503 | 1.5863 | 1020 | 0.1781 | 0.0949 | -4.0544 | 0.9385 | 4.1493 | -3.5316 | -45.4105 | -1.1901 | -1.2136 |
0.199 | 1.6796 | 1080 | 0.1939 | 0.0256 | -4.1360 | 0.9335 | 4.1616 | -4.2245 | -46.2266 | -1.1883 | -1.2111 |
0.2059 | 1.7729 | 1140 | 0.1670 | 0.0688 | -4.1823 | 0.9405 | 4.2511 | -3.7922 | -46.6892 | -1.1819 | -1.2056 |
0.1566 | 1.8663 | 1200 | 0.1590 | 0.0963 | -4.1650 | 0.9464 | 4.2613 | -3.5175 | -46.5159 | -1.1893 | -1.2134 |
0.1869 | 1.9596 | 1260 | 0.1640 | 0.0816 | -4.1815 | 0.9454 | 4.2631 | -3.6648 | -46.6814 | -1.1877 | -1.2113 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 9
Model tree for Howard881010/heat_transfer_dpo_p
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407