DistilbertNER

This model fine-tuned for the Named Entity Recognition (NER) task on a mixed NER dataset collected from ARMAN, PEYMA, and WikiANN that covered ten types of entities:

  • Date (DAT)
  • Event (EVE)
  • Facility (FAC)
  • Location (LOC)
  • Money (MON)
  • Organization (ORG)
  • Percent (PCT)
  • Person (PER)
  • Product (PRO)
  • Time (TIM)

Dataset Information

Records B-DAT B-EVE B-FAC B-LOC B-MON B-ORG B-PCT B-PER B-PRO B-TIM I-DAT I-EVE I-FAC I-LOC I-MON I-ORG I-PCT I-PER I-PRO I-TIM
Train 29133 1423 1487 1400 13919 417 15926 355 12347 1855 150 1947 5018 2421 4118 1059 19579 573 7699 1914 332
Valid 5142 267 253 250 2362 100 2651 64 2173 317 19 373 799 387 717 270 3260 101 1382 303 35
Test 6049 407 256 248 2886 98 3216 94 2646 318 43 568 888 408 858 263 3967 141 1707 296 78

Evaluation

The following tables summarize the scores obtained by model overall and per each class.

Overall

Model accuracy precision recall f1
Distilbert 0.994534 0.946326 0.95504 0.950663

Per entities

| | number | precision | recall | f1 | |:---: |:------: |:---------: |:--------: |:--------: | | DAT | 407 | 0.812048 | 0.828010 | 0.819951 | | EVE | 256 | 0.955056 | 0.996094 | 0.975143 | | FAC | 248 | 0.972549 | 1.000000 | 0.986083 | | LOC | 2884 | 0.968403 | 0.967060 | 0.967731 | | MON | 98 | 0.925532 | 0.887755 | 0.906250 | | ORG | 3216 | 0.932095 | 0.951803 | 0.941846 | | PCT | 94 | 0.936842 | 0.946809 | 0.941799 | | PER | 2645 | 0.959818 | 0.957278 | 0.958546 | | PRO | 318 | 0.963526 | 0.996855 | 0.979907 | | TIM | 43 | 0.760870 | 0.813953 | 0.786517 |

How To Use

You use this model with Transformers pipeline for NER.

Installing requirements

pip install transformers

How to predict using pipeline

from transformers import AutoTokenizer
from transformers import AutoModelForTokenClassification  # for pytorch
from transformers import TFAutoModelForTokenClassification  # for tensorflow
from transformers import pipeline


model_name_or_path = "HooshvareLab/distilbert-fa-zwnj-base-ner" 
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForTokenClassification.from_pretrained(model_name_or_path)  # Pytorch
# model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path)  # Tensorflow

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "در سال ۲۰۱۳ درگذشت و آندرتیکر و کین برای او مراسم یادبود گرفتند."

ner_results = nlp(example)
print(ner_results)

Questions?

Post a Github issue on the ParsNER Issues repo.

Downloads last month
95
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for HooshvareLab/distilbert-fa-zwnj-base-ner

Finetunes
1 model

Space using HooshvareLab/distilbert-fa-zwnj-base-ner 1