fineTuningXLMRoberta-TokenClassification-Spacy

This model is a fine-tuned version of cardiffnlp/twitter-xlm-roberta-base-sentiment on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8479
  • Precision: 0.2076
  • Recall: 0.2102
  • F1: 0.2089
  • Accuracy: 0.6718

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 31 0.7433 0.2164 0.1421 0.1716 0.6557
No log 2.0 62 0.7177 0.2275 0.1848 0.2039 0.6727
No log 3.0 93 0.7054 0.1719 0.1949 0.1827 0.6637
No log 4.0 124 0.7148 0.1823 0.1919 0.1869 0.6628
No log 5.0 155 0.7018 0.2063 0.2061 0.2062 0.6853
No log 6.0 186 0.7310 0.1866 0.1919 0.1892 0.6711
No log 7.0 217 0.7272 0.2150 0.2071 0.2110 0.6897
No log 8.0 248 0.7878 0.1758 0.1848 0.1802 0.6582
No log 9.0 279 0.7727 0.2080 0.2071 0.2075 0.6814
No log 10.0 310 0.8099 0.1969 0.1959 0.1964 0.6688
No log 11.0 341 0.8119 0.2062 0.2030 0.2046 0.6766
No log 12.0 372 0.8227 0.2105 0.2112 0.2108 0.6770
No log 13.0 403 0.8300 0.2008 0.2051 0.2029 0.6744
No log 14.0 434 0.8409 0.2064 0.2081 0.2073 0.6739
No log 15.0 465 0.8479 0.2076 0.2102 0.2089 0.6718

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
277M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Hina541/fineTuningXLMRoberta-TokenClassification-Spacy

Finetuned
(30)
this model