opus-mt-tc-big-ces_slk-en

Neural machine translation model for translating from Czech and Slovak (ces+slk) to English (en).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train.

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Model info

Usage

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "PodΓ­vej se na svΓ© kalhoty! Zapni si je na zip.",
    "MrzΓ­ mΔ›, ΕΎe Tom odchΓ‘zΓ­."
]

model_name = "pytorch-models/opus-mt-tc-big-ces_slk-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Look at your pants, zip them up.
#     I'm sorry Tom's leaving.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-ces_slk-en")
print(pipe("PodΓ­vej se na svΓ© kalhoty! Zapni si je na zip."))

# expected output: Look at your pants, zip them up.

Benchmarks

langpair testset chr-F BLEU #sent #words
ces-eng tatoeba-test-v2021-08-07 0.72120 57.7 13824 105010
ces-eng flores101-devtest 0.66511 41.2 1012 24721
slk-eng flores101-devtest 0.66084 40.1 1012 24721
ces-eng multi30k_test_2016_flickr 0.62216 38.6 1000 12955
ces-eng multi30k_test_2018_flickr 0.61838 37.9 1071 14689
ces-eng newssyscomb2009 0.56380 29.9 502 11818
ces-eng news-test2008 0.54071 26.2 2051 49380
ces-eng newstest2009 0.55871 28.8 2525 65399
ces-eng newstest2010 0.57634 30.3 2489 61711
ces-eng newstest2011 0.57002 30.3 3003 74681
ces-eng newstest2012 0.56564 29.4 3003 72812
ces-eng newstest2013 0.58723 33.1 3000 64505
ces-eng newstest2014 0.64192 38.3 3003 68065
ces-eng newstest2015 0.58688 33.6 2656 53569
ces-eng newstest2016 0.61544 36.8 2999 64670
ces-eng newstest2017 0.58085 32.3 3005 61721
ces-eng newstest2018 0.58627 33.0 2983 63495

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 3405783
  • port time: Wed Apr 13 18:42:25 EEST 2022
  • port machine: LM0-400-22516.local
Downloads last month
39
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using Helsinki-NLP/opus-mt-tc-big-ces_slk-en 8

Evaluation results