|
--- |
|
library_name: transformers |
|
language: |
|
- aa |
|
- am |
|
- ar |
|
- arc |
|
- bcw |
|
- byn |
|
- cop |
|
- daa |
|
- de |
|
- dsh |
|
- en |
|
- gde |
|
- gnd |
|
- ha |
|
- hbo |
|
- he |
|
- hig |
|
- irk |
|
- jpa |
|
- kab |
|
- ker |
|
- kqp |
|
- ktb |
|
- kxc |
|
- lln |
|
- lme |
|
- meq |
|
- mfh |
|
- mfi |
|
- mfk |
|
- mif |
|
- mpg |
|
- mqb |
|
- mt |
|
- muy |
|
- nl |
|
- oar |
|
- om |
|
- pbi |
|
- phn |
|
- rif |
|
- sgw |
|
- shi |
|
- shy |
|
- so |
|
- sur |
|
- syc |
|
- syr |
|
- taq |
|
- ti |
|
- tig |
|
- tmc |
|
- tmh |
|
- tmr |
|
- ttr |
|
- tzm |
|
- wal |
|
- xed |
|
- zgh |
|
|
|
tags: |
|
- translation |
|
- opus-mt-tc-bible |
|
|
|
license: apache-2.0 |
|
model-index: |
|
- name: opus-mt-tc-bible-big-afa-deu_eng_nld |
|
results: |
|
- task: |
|
name: Translation multi-multi |
|
type: translation |
|
args: multi-multi |
|
dataset: |
|
name: tatoeba-test-v2020-07-28-v2023-09-26 |
|
type: tatoeba_mt |
|
args: multi-multi |
|
metrics: |
|
- name: BLEU |
|
type: bleu |
|
value: 39.9 |
|
- name: chr-F |
|
type: chrf |
|
value: 0.57350 |
|
--- |
|
# opus-mt-tc-bible-big-afa-deu_eng_nld |
|
|
|
## Table of Contents |
|
- [Model Details](#model-details) |
|
- [Uses](#uses) |
|
- [Risks, Limitations and Biases](#risks-limitations-and-biases) |
|
- [How to Get Started With the Model](#how-to-get-started-with-the-model) |
|
- [Training](#training) |
|
- [Evaluation](#evaluation) |
|
- [Citation Information](#citation-information) |
|
- [Acknowledgements](#acknowledgements) |
|
|
|
## Model Details |
|
|
|
Neural machine translation model for translating from Afro-Asiatic languages (afa) to unknown (deu+eng+nld). |
|
|
|
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). |
|
**Model Description:** |
|
- **Developed by:** Language Technology Research Group at the University of Helsinki |
|
- **Model Type:** Translation (transformer-big) |
|
- **Release**: 2024-08-17 |
|
- **License:** Apache-2.0 |
|
- **Language(s):** |
|
- Source Language(s): aar acm afb amh apc ara arc arq arz bcw byn cop daa dsh gde gnd hau hbo heb hig irk jpa kab ker kqp ktb kxc lln lme meq mfh mfi mfk mif mlt mpg mqb muy oar orm pbi phn rif sgw shi shy som sur syc syr taq tig tir tmc tmh tmr ttr tzm wal xed zgh |
|
- Target Language(s): deu eng nld |
|
- Valid Target Language Labels: >>deu<< >>eng<< >>nld<< >>xxx<< |
|
- **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip) |
|
- **Resources for more information:** |
|
- [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/afa-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17) |
|
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) |
|
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) |
|
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/) |
|
- [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1) |
|
- [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/) |
|
|
|
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>deu<<` |
|
|
|
## Uses |
|
|
|
This model can be used for translation and text-to-text generation. |
|
|
|
## Risks, Limitations and Biases |
|
|
|
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** |
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). |
|
|
|
## How to Get Started With the Model |
|
|
|
A short example code: |
|
|
|
```python |
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
src_text = [ |
|
">>eng<< هذا هو المكان الذي تعيش فيه.", |
|
">>eng<< Amdan yesnulfa-d Ṛebbi akken kan wa ur ineqq wa." |
|
] |
|
|
|
model_name = "pytorch-models/opus-mt-tc-bible-big-afa-deu_eng_nld" |
|
tokenizer = MarianTokenizer.from_pretrained(model_name) |
|
model = MarianMTModel.from_pretrained(model_name) |
|
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) |
|
|
|
for t in translated: |
|
print( tokenizer.decode(t, skip_special_tokens=True) ) |
|
|
|
# expected output: |
|
# This is where you live. |
|
# The man who had been killed by God didn't kill him. |
|
``` |
|
|
|
You can also use OPUS-MT models with the transformers pipelines, for example: |
|
|
|
```python |
|
from transformers import pipeline |
|
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-afa-deu_eng_nld") |
|
print(pipe(">>eng<< هذا هو المكان الذي تعيش فيه.")) |
|
|
|
# expected output: This is where you live. |
|
``` |
|
|
|
## Training |
|
|
|
- **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) |
|
- **Pre-processing**: SentencePiece (spm32k,spm32k) |
|
- **Model Type:** transformer-big |
|
- **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip) |
|
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) |
|
|
|
## Evaluation |
|
|
|
* [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/afa-deu%2Beng%2Bnld/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17) |
|
* test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt) |
|
* test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afa-deu+eng+nld/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt) |
|
* benchmark results: [benchmark_results.txt](benchmark_results.txt) |
|
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip) |
|
|
|
| langpair | testset | chr-F | BLEU | #sent | #words | |
|
|----------|---------|-------|-------|-------|--------| |
|
| multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.57350 | 39.9 | 10000 | 73314 | |
|
|
|
## Citation Information |
|
|
|
* Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) |
|
|
|
```bibtex |
|
@article{tiedemann2023democratizing, |
|
title={Democratizing neural machine translation with {OPUS-MT}}, |
|
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami}, |
|
journal={Language Resources and Evaluation}, |
|
number={58}, |
|
pages={713--755}, |
|
year={2023}, |
|
publisher={Springer Nature}, |
|
issn={1574-0218}, |
|
doi={10.1007/s10579-023-09704-w} |
|
} |
|
|
|
@inproceedings{tiedemann-thottingal-2020-opus, |
|
title = "{OPUS}-{MT} {--} Building open translation services for the World", |
|
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, |
|
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", |
|
month = nov, |
|
year = "2020", |
|
address = "Lisboa, Portugal", |
|
publisher = "European Association for Machine Translation", |
|
url = "https://aclanthology.org/2020.eamt-1.61", |
|
pages = "479--480", |
|
} |
|
|
|
@inproceedings{tiedemann-2020-tatoeba, |
|
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", |
|
author = {Tiedemann, J{\"o}rg}, |
|
booktitle = "Proceedings of the Fifth Conference on Machine Translation", |
|
month = nov, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.wmt-1.139", |
|
pages = "1174--1182", |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/). |
|
|
|
## Model conversion info |
|
|
|
* transformers version: 4.45.1 |
|
* OPUS-MT git hash: a0ea3b3 |
|
* port time: Mon Oct 7 17:09:45 EEST 2024 |
|
* port machine: LM0-400-22516.local |
|
|