SegFormer_Clean_Set1_95images_mit-b5_Grayscale
This model is a fine-tuned version of nvidia/mit-b5 on the Hasano20/Clean_Set1_95images dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0103
- Val Loss: 0.0229
- Mean Iou: 0.9729
- Mean Accuracy: 0.9859
- Overall Accuracy: 0.9928
- Accuracy Background: 0.9972
- Accuracy Melt: 0.9669
- Accuracy Substrate: 0.9937
- Iou Background: 0.9944
- Iou Melt: 0.9370
- Iou Substrate: 0.9871
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1375 | 5.5556 | 50 | 0.1577 | 0.7820 | 0.8338 | 0.9411 | 0.9857 | 0.5352 | 0.9806 | 0.9746 | 0.4754 | 0.8959 |
0.0403 | 11.1111 | 100 | 0.1948 | 0.7535 | 0.7960 | 0.9378 | 0.9893 | 0.4011 | 0.9977 | 0.9826 | 0.3954 | 0.8825 |
0.0291 | 16.6667 | 150 | 0.0484 | 0.9337 | 0.9479 | 0.9832 | 0.9969 | 0.8495 | 0.9973 | 0.9884 | 0.8414 | 0.9712 |
0.0114 | 22.2222 | 200 | 0.0273 | 0.9634 | 0.9808 | 0.9903 | 0.9930 | 0.9544 | 0.9950 | 0.9917 | 0.9149 | 0.9838 |
0.0138 | 27.7778 | 250 | 0.0289 | 0.9655 | 0.9782 | 0.9910 | 0.9966 | 0.9423 | 0.9956 | 0.9941 | 0.9190 | 0.9836 |
0.0072 | 33.3333 | 300 | 0.0257 | 0.9689 | 0.9855 | 0.9918 | 0.9975 | 0.9682 | 0.9908 | 0.9945 | 0.9276 | 0.9847 |
0.007 | 38.8889 | 350 | 0.0234 | 0.9722 | 0.9862 | 0.9926 | 0.9968 | 0.9684 | 0.9934 | 0.9944 | 0.9354 | 0.9867 |
0.0063 | 44.4444 | 400 | 0.0232 | 0.9727 | 0.9866 | 0.9927 | 0.9971 | 0.9696 | 0.9931 | 0.9945 | 0.9366 | 0.9870 |
0.0103 | 50.0 | 450 | 0.0229 | 0.9729 | 0.9859 | 0.9928 | 0.9972 | 0.9669 | 0.9937 | 0.9944 | 0.9370 | 0.9871 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Hasano20/segformer_clean-set1_mit-b5_rgb
Base model
nvidia/mit-b5