|
--- |
|
library_name: peft |
|
base_model: Qwen/Qwen2-1.5B-Instruct |
|
pipeline_tag: text-generation |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Developed by: hack337** |
|
- **Model type: qwen2** |
|
- **Finetuned from model: Qwen/Qwen2-1.5B-Instruct** |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository: https://huggingface.co/Hack337/WavGPT-1.0** |
|
- **Demo: https://huggingface.co/spaces/Hack337/WavGPT** |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
|
|
device = "cuda" # the device to load the model onto |
|
model_path = "Hack337/WavGPT-1.0" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen2-1.5B-Instruct", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct") |
|
model = PeftModel.from_pretrained(model, model_path) |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "Вы очень полезный помощник."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
- PEFT 0.11.1 |