|
--- |
|
library_name: peft |
|
base_model: Qwen/Qwen2-1.5B-Instruct |
|
pipeline_tag: text-generation |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Developed by: hack337** |
|
- **Model type: qwen2** |
|
- **Finetuned from model: Qwen/Qwen2-1.5B-Instruct** |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository: https://huggingface.co/Hack337/WavGPT-1.0** |
|
- **Demo: https://huggingface.co/spaces/Hack337/WavGPT** |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Hack337/WavGPT-1.0-merged", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Hack337/WavGPT-1.0-merged") |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "Вы очень полезный помощник."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
``` |
|
|
|
Use the code below to get started with the model using NPU. |
|
|
|
```python |
|
from transformers import AutoTokenizer, TextStreamer |
|
from intel_npu_acceleration_library import NPUModelForCausalLM |
|
import torch |
|
|
|
# Load the NPU-optimized model without LoRA |
|
model = NPUModelForCausalLM.from_pretrained( |
|
"Hack337/WavGPT-1.0-merged", |
|
use_cache=True, |
|
dtype=torch.float16 # Use float16 for the NPU |
|
).eval() |
|
|
|
# Load the tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("Hack337/WavGPT-1.0-merged") |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
streamer = TextStreamer(tokenizer, skip_special_tokens=True) |
|
|
|
# Prompt handling |
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "Вы очень полезный помощник."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
# Convert to a text format compatible with the model |
|
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
prefix = tokenizer([text], return_tensors="pt")["input_ids"].to("npu") |
|
|
|
# Generation configuration |
|
generation_kwargs = dict( |
|
input_ids=prefix, |
|
streamer=streamer, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.9, |
|
max_new_tokens=512, |
|
) |
|
|
|
# Run inference on the NPU |
|
print("Run inference") |
|
_ = model.generate(**generation_kwargs) |
|
|
|
``` |
|
|
|
- PEFT 0.11.1 |