wav2vec2-E30_ps

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3344
  • Cer: 26.2632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
32.5841 0.1289 200 5.0826 100.0
5.3998 0.2579 400 4.6908 100.0
4.882 0.3868 600 4.7141 100.0
4.8041 0.5158 800 4.6746 100.0
4.7502 0.6447 1000 4.6224 100.0
4.7187 0.7737 1200 4.6150 100.0
4.6627 0.9026 1400 4.5518 99.8825
4.5966 1.0316 1600 4.5186 98.5488
4.5155 1.1605 1800 4.4687 98.7368
4.2292 1.2895 2000 4.3169 95.4642
3.3494 1.4184 2200 2.9891 55.7638
2.7084 1.5474 2400 2.6772 48.9718
2.3971 1.6763 2600 2.3131 43.8719
2.1476 1.8053 2800 2.0864 39.6240
1.9298 1.9342 3000 1.8900 35.7814
1.7723 2.0632 3200 1.7887 34.0952
1.657 2.1921 3400 1.6924 32.7203
1.4995 2.3211 3600 1.5108 29.1363
1.4486 2.4500 3800 1.4734 29.3420
1.3692 2.5790 4000 1.3831 27.1445
1.3174 2.7079 4200 1.3562 26.6216
1.2546 2.8369 4400 1.3616 26.7979
1.2237 2.9658 4600 1.3344 26.2632

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
9
Safetensors
Model size
317M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Gummybear05/wav2vec2-E30_ps

Finetuned
(556)
this model