|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-E10_speed_pause |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-E10_speed_pause |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3467 |
|
- Cer: 50.0764 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 33.121 | 0.1289 | 200 | 5.0379 | 100.0 | |
|
| 5.0221 | 0.2579 | 400 | 4.6710 | 100.0 | |
|
| 4.8585 | 0.3868 | 600 | 4.6327 | 100.0 | |
|
| 4.8155 | 0.5158 | 800 | 4.6354 | 100.0 | |
|
| 4.7249 | 0.6447 | 1000 | 4.6274 | 98.6313 | |
|
| 4.6786 | 0.7737 | 1200 | 4.5950 | 99.5418 | |
|
| 4.6106 | 0.9026 | 1400 | 4.5545 | 97.9382 | |
|
| 4.4195 | 1.0316 | 1600 | 4.4562 | 99.2364 | |
|
| 4.1478 | 1.1605 | 1800 | 4.2379 | 97.5623 | |
|
| 3.8234 | 1.2895 | 2000 | 3.9072 | 78.5714 | |
|
| 3.39 | 1.4184 | 2200 | 3.5827 | 76.3628 | |
|
| 3.2255 | 1.5474 | 2400 | 3.4255 | 73.1497 | |
|
| 2.9972 | 1.6763 | 2600 | 3.1945 | 66.3593 | |
|
| 2.8726 | 1.8053 | 2800 | 3.0039 | 62.3884 | |
|
| 2.7321 | 1.9342 | 3000 | 2.9409 | 62.7526 | |
|
| 2.6263 | 2.0632 | 3200 | 2.7179 | 58.0945 | |
|
| 2.5459 | 2.1921 | 3400 | 2.6416 | 57.8536 | |
|
| 2.4325 | 2.3211 | 3600 | 2.6501 | 56.4850 | |
|
| 2.3828 | 2.4500 | 3800 | 2.5066 | 55.4688 | |
|
| 2.2717 | 2.5790 | 4000 | 2.4522 | 53.1837 | |
|
| 2.2597 | 2.7079 | 4200 | 2.3933 | 50.6403 | |
|
| 2.2042 | 2.8369 | 4400 | 2.3427 | 50.8752 | |
|
| 2.197 | 2.9658 | 4600 | 2.3467 | 50.0764 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|