metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-multilingual-cased-finetuned-ner-harem
results: []
bert-base-multilingual-cased-finetuned-ner-harem
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2503
- Precision: 0.7878
- Recall: 0.8008
- F1: 0.7942
- Accuracy: 0.9658
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9978 | 281 | 0.2317 | 0.6004 | 0.6203 | 0.6102 | 0.9475 |
0.2657 | 1.9973 | 562 | 0.1557 | 0.7484 | 0.7282 | 0.7382 | 0.9629 |
0.2657 | 2.9969 | 843 | 0.1438 | 0.7812 | 0.7925 | 0.7868 | 0.9668 |
0.0848 | 3.9964 | 1124 | 0.1789 | 0.7429 | 0.7614 | 0.7520 | 0.9635 |
0.0848 | 4.9960 | 1405 | 0.2275 | 0.7769 | 0.8091 | 0.7927 | 0.9655 |
0.0378 | 5.9956 | 1686 | 0.1942 | 0.7694 | 0.8237 | 0.7956 | 0.9650 |
0.0378 | 6.9951 | 1967 | 0.2416 | 0.7753 | 0.8091 | 0.7919 | 0.9656 |
0.0192 | 7.9982 | 2249 | 0.2409 | 0.7831 | 0.7863 | 0.7847 | 0.9655 |
0.0084 | 8.9978 | 2530 | 0.2450 | 0.7809 | 0.7988 | 0.7897 | 0.9650 |
0.0084 | 9.9938 | 2810 | 0.2503 | 0.7878 | 0.8008 | 0.7942 | 0.9658 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3