Fine-tuned mDeBERTa V3 model for subjectivity detection in newspaper sentences. This model was developed as part of the CLEF 2023 CheckThat! Lab Task 2: Subjectivity in News Articles.
The goal in this task is to detect whether a sentence is objective (OBJ) or subjective (SUBJ). A sentence is subjective if its content is based on or influenced by personal feelings, tastes, or opinions. Otherwise, the sentence is objective. (Antici et al., 2023).
The model was fine-tuned using a multilingual training and Arabic development dataset, for which the following (hyper)parameters were utilized:
Batch Size = 16
Max Epochs = 4
Learning Rate = 5e-5
Warmup Steps = 500
Weight Decay = 0
The model ranked second in the CheckThat! Lab and obtained a macro F1 of 0.78 and a SUBJ F1 of 0.64.
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.