convnext-tiny-224-finetuned-main-gpu-20e-final

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0349
  • Accuracy: 0.9875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6197 1.0 551 0.5899 0.7440
0.3906 2.0 1102 0.3245 0.8717
0.3161 3.0 1653 0.2228 0.9135
0.2323 4.0 2204 0.1481 0.9446
0.2049 5.0 2755 0.1100 0.9589
0.1453 6.0 3306 0.0887 0.9671
0.1786 7.0 3857 0.0796 0.9702
0.1576 8.0 4408 0.0635 0.9767
0.1584 9.0 4959 0.0563 0.9798
0.122 10.0 5510 0.0570 0.9793
0.1138 11.0 6061 0.0526 0.9819
0.1116 12.0 6612 0.0498 0.9832
0.0876 13.0 7163 0.0497 0.9830
0.0956 14.0 7714 0.0403 0.9855
0.0892 15.0 8265 0.0414 0.9855
0.0807 16.0 8816 0.0425 0.9861
0.0959 17.0 9367 0.0397 0.9866
0.0847 18.0 9918 0.0373 0.9874
0.0962 19.0 10469 0.0356 0.9870
0.0731 20.0 11020 0.0349 0.9875

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results