Bart_mediasum

This model is a fine-tuned version of facebook/bart-large on the mediasum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9021
  • Rouge1: 0.3236
  • Rouge2: 0.1651
  • Rougel: 0.2953
  • Rougelsum: 0.2953
  • Gen Len: 15.7946
  • Precision: 0.8858
  • Recall: 0.8739
  • F1: 0.8795

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 24
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
2.1171 1.0 4621 2.0135 0.3138 0.1556 0.2853 0.2853 16.4704 0.8836 0.8717 0.8773
1.9804 2.0 9242 1.9440 0.3147 0.1581 0.2864 0.2866 16.2207 0.8831 0.8725 0.8775
1.8971 3.0 13863 1.9157 0.3209 0.1638 0.2925 0.2926 15.4676 0.8857 0.8733 0.8792
1.8449 4.0 18484 1.9021 0.3236 0.1651 0.2953 0.2953 15.7946 0.8858 0.8739 0.8795

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GlycerinLOL/Bart_mediasum

Finetuned
(144)
this model

Evaluation results