File size: 2,076 Bytes
ec7e849 7e93eac ec7e849 7e93eac ec7e849 3d42703 ec7e849 ee466fb ec7e849 3d42703 ec7e849 3d42703 ec7e849 3d42703 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ckpts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ckpts
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3189
- Accuracy: 0.9444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7722 | 1.0 | 223 | 0.4733 | 0.8434 |
| 0.4755 | 2.0 | 446 | 0.4240 | 0.8687 |
| 0.3262 | 3.0 | 669 | 0.2939 | 0.9343 |
| 0.2642 | 4.0 | 892 | 0.3087 | 0.9293 |
| 0.191 | 5.0 | 1115 | 0.3079 | 0.9394 |
| 0.1534 | 6.0 | 1338 | 0.3134 | 0.9394 |
| 0.1571 | 7.0 | 1561 | 0.4009 | 0.9293 |
| 0.1328 | 8.0 | 1784 | 0.3189 | 0.9444 |
| 0.1567 | 9.0 | 2007 | 0.4089 | 0.9192 |
| 0.1043 | 10.0 | 2230 | 0.3429 | 0.9343 |
| 0.1161 | 11.0 | 2453 | 0.3534 | 0.9394 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|