ckpts

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2980
  • Accuracy: 0.9545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1628 1.0 223 0.7126 0.7727
0.6562 2.0 446 0.5069 0.8485
0.4199 3.0 669 0.3570 0.8990
0.325 4.0 892 0.2092 0.9394
0.2217 5.0 1115 0.2392 0.9444
0.1831 6.0 1338 0.2754 0.9293
0.1598 7.0 1561 0.3294 0.9343
0.1676 8.0 1784 0.2669 0.9495
0.1597 9.0 2007 0.3438 0.9293
0.1132 10.0 2230 0.3159 0.9444
0.1224 11.0 2453 0.2980 0.9545
0.095 12.0 2676 0.2970 0.9444
0.1087 13.0 2899 0.3449 0.9343
0.1254 14.0 3122 0.3198 0.9444

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
33
Safetensors
Model size
95M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Gizachew/ckpts

Finetuned
(78)
this model