Gille's picture
Update README.md
fb638af verified
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Gille/StrangeMerges_6-7B-dare_ties
- berkeley-nest/Starling-LM-7B-alpha
base_model:
- Gille/StrangeMerges_6-7B-dare_ties
- berkeley-nest/Starling-LM-7B-alpha
---
# StrangeMerges_7-7B-slerp
StrangeMerges_7-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Gille/StrangeMerges_6-7B-dare_ties](https://huggingface.co/Gille/StrangeMerges_6-7B-dare_ties)
* [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Gille/StrangeMerges_6-7B-dare_ties
layer_range: [0, 32]
- model: berkeley-nest/Starling-LM-7B-alpha
layer_range: [0, 32]
merge_method: slerp
base_model: Gille/StrangeMerges_6-7B-dare_ties
parameters:
t:
- filter: self_attn
value: [0.9, 0.5, 0.3, 0.7, 0.1]
- filter: mlp
value: [0.1, 0.5, 0.7, 0.3, 0.9]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_7-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```