metadata
language:
- multilingual
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:MatryoshkaLoss
base_model: Ghani-25/LF_enrich_sim
widget:
- source_sentence: CTO and co-Founder
sentences:
- Responsable surpervision des départements
- Senior sales executive
- >-
Injection Operations Supervisor - Industrial Efficiency - Systems &
Equipment
- source_sentence: Commercial Account Executive
sentences:
- Automation Electrician
- Love Coach Extra
- Psychologue Clinicienne (Croix Rouge Française) Hébergements et ESAT
- source_sentence: Chargée d'etudes actuarielles IFRS17
sentences:
- Visuel Merchandiser Shop In Shop
- VIP Lounge Hostess
- Directeur Adjoint des opérations
- source_sentence: Cheffe de projet emailing
sentences:
- Experte Territoriale
- Responsable Clientele / Commerciale et Communication /
- STRATEGIC CONSULTANT - LIVE BUSINESS CASE
- source_sentence: 'Summer Job: Export Manager'
sentences:
- Clinical Project Leader
- Member and Maghreb Representative
- Responsable Export Afrique Amériques
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: Our original base similarity Matryoshka
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 768
type: dim_768
metrics:
- type: pearson_cosine
value: 0.9696182810336916
name: Pearson Cosine
- type: spearman_cosine
value: 0.9472439476744547
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 512
type: dim_512
metrics:
- type: pearson_cosine
value: 0.9692898932305203
name: Pearson Cosine
- type: spearman_cosine
value: 0.9466297549051846
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 256
type: dim_256
metrics:
- type: pearson_cosine
value: 0.9662306280132803
name: Pearson Cosine
- type: spearman_cosine
value: 0.9407689506959847
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 128
type: dim_128
metrics:
- type: pearson_cosine
value: 0.960638838395904
name: Pearson Cosine
- type: spearman_cosine
value: 0.9314825034513964
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dim 64
type: dim_64
metrics:
- type: pearson_cosine
value: 0.9463950305830967
name: Pearson Cosine
- type: spearman_cosine
value: 0.9100801085031441
name: Spearman Cosine
Our original base similarity Matryoshka
This is a [sentence-transformers] model finetuned from Ghani-25/LF_enrich_sim on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Ghani-25/LF_enrich_sim
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: multilingual
- License: apache-2.0
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Ghani-25/LF-enrich-sim-matryoshka-64")
# Run inference
sentences = [
'Summer Job: Export Manager',
'Responsable Export Afrique Amériquess
'Clinical Project Leader',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
# Extraction de la diagonale pour obtenir les similarités correspondantes
similarities_diagonal = similarities.diag().cpu().numpy()
print(similarities_diagonal)
# [0.896542]
Evaluation
Metrics
Semantic Similarity
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
pearson_cosine | 0.9696 | 0.9693 | 0.9662 | 0.9606 | 0.9464 |
spearman_cosine | 0.9472 | 0.9466 | 0.9408 | 0.9315 | 0.9101 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 31,500 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 3 tokens
- mean: 10.22 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 9.98 tokens
- max: 67 tokens
- min: -0.05
- mean: 0.37
- max: 0.98
- Samples:
sentence1 sentence2 label Contributive filmer
Doctorant contractuel (2016-2019)
0.20986526
Responsable Développement et Communication
Bilingual Business Assistant
0.3238712
Law Trainee
Sales Director contract manager
0.24983984
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "CosineSimilarityLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fused
All Hyperparameters
Contact the author.
Training Logs
Epoch | Step | Training Loss | dim_768_spearman_cosine | dim_512_spearman_cosine | dim_256_spearman_cosine | dim_128_spearman_cosine | dim_64_spearman_cosine |
---|---|---|---|---|---|---|---|
0.1624 | 10 | 0.0669 | - | - | - | - | - |
0.3249 | 20 | 0.0563 | - | - | - | - | - |
0.4873 | 30 | 0.0496 | - | - | - | - | - |
0.6497 | 40 | 0.0456 | - | - | - | - | - |
0.8122 | 50 | 0.0418 | - | - | - | - | - |
0.9746 | 60 | 0.0407 | - | - | - | - | - |
0.9909 | 61 | - | 0.9223 | 0.9199 | 0.9087 | 0.8920 | 0.8586 |
1.1371 | 70 | 0.0326 | - | - | - | - | - |
1.2995 | 80 | 0.0312 | - | - | - | - | - |
1.4619 | 90 | 0.0303 | - | - | - | - | - |
1.6244 | 100 | 0.03 | - | - | - | - | - |
1.7868 | 110 | 0.0291 | - | - | - | - | - |
1.9492 | 120 | 0.0301 | - | - | - | - | - |
1.9980 | 123 | - | 0.9393 | 0.9382 | 0.9304 | 0.9191 | 0.8946 |
2.1117 | 130 | 0.0257 | - | - | - | - | - |
2.2741 | 140 | 0.0243 | - | - | - | - | - |
2.4365 | 150 | 0.0246 | - | - | - | - | - |
2.5990 | 160 | 0.0235 | - | - | - | - | - |
2.7614 | 170 | 0.024 | - | - | - | - | - |
2.9239 | 180 | 0.023 | - | - | - | - | - |
2.9888 | 184 | - | 0.9464 | 0.9457 | 0.9396 | 0.9301 | 0.9083 |
3.0863 | 190 | 0.0222 | - | - | - | - | - |
3.2487 | 200 | 0.022 | - | - | - | - | - |
3.4112 | 210 | 0.022 | - | - | - | - | - |
3.5736 | 220 | 0.0226 | - | - | - | - | - |
3.7360 | 230 | 0.021 | - | - | - | - | - |
3.8985 | 240 | 0.0224 | - | - | - | - | - |
3.9635 | 244 | - | 0.9472 | 0.9466 | 0.9408 | 0.9315 | 0.9101 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1