Evaluate on MNLI:

from transformers import (
    default_data_collator,
    AutoTokenizer,
    AutoModelForSequenceClassification,
    Trainer,
)
from datasets import load_dataset

import functools

from utils import compute_metrics, preprocess_function

model_name = "George-Ogden/bert-base-cased-finetuned-mnli"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
trainer = Trainer(
    model=model,
    eval_dataset="mnli",
    tokenizer=tokenizer,
    compute_metrics=compute_metrics,
    data_collator=default_data_collator,
)

raw_datasets = load_dataset(
    "glue",
    "mnli",
).map(functools.partial(preprocess_function, tokenizer), batched=True)

tasks = ["mnli", "mnli-mm"]
eval_datasets = [
    raw_datasets["validation_matched"],
    raw_datasets["validation_mismatched"],
]

for layers in reversed(range(model.num_layers + 1)):
    for eval_dataset, task in zip(eval_datasets, tasks):
        metrics = trainer.evaluate(eval_dataset=eval_dataset)
        metrics["eval_samples"] = len(eval_dataset)

        if task == "mnli-mm":
            metrics = {k + "_mm": v for k, v in metrics.items()}

        trainer.log_metrics(metrics)
Downloads last month
12
Safetensors
Model size
108M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train George-Ogden/bert-base-cased-finetuned-mnli