MiniChat-1.5-3B

📑 arXiv | 👻 GitHub | 🤗 HuggingFace-MiniMA | 🤗 HuggingFace-MiniChat | 🤗 HuggingFace-MiniChat-1.5 | 🤖 ModelScope-MiniMA | 🤖 ModelScope-MiniChat

🆕 Updates from MiniChat-3B:

  • better data mixture;
  • use of NEFTune;
  • use of DPO.

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".

Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models.

teaser_b

The following is an example code snippet to use MiniChat-3B:

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from conversation import get_default_conv_template

# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

conv = get_default_conv_template("minichat")

question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n    if len(arr1) == 0:\n        return []\n    if len(arr2) == 0:\n        return arr1\n\n    common_elements = []\n    for element in arr1:\n        if element in arr2:\n            common_elements.append(element)\n\n    return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.

Bibtex

@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 50.23
AI2 Reasoning Challenge (25-Shot) 46.50
HellaSwag (10-Shot) 68.28
MMLU (5-Shot) 46.67
TruthfulQA (0-shot) 50.71
Winogrande (5-shot) 65.04
GSM8k (5-shot) 24.18
Downloads last month
1,214
Safetensors
Model size
3.02B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GeneZC/MiniChat-1.5-3B

Adapters
7 models
Quantizations
6 models

Spaces using GeneZC/MiniChat-1.5-3B 3

Collection including GeneZC/MiniChat-1.5-3B

Evaluation results