LugandaASRwav2Vec300M

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1741
  • Wer: 0.2231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 24
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Wer
6.4394 0.14 100 2.9784 1.0
2.8739 0.27 200 2.7056 1.0000
1.2203 0.41 300 0.5656 0.7264
0.4507 0.54 400 0.3978 0.5258
0.3657 0.68 500 0.3314 0.4416
0.3131 0.81 600 0.2996 0.4049
0.2886 0.95 700 0.2823 0.3766
0.2535 1.08 800 0.2517 0.3317
0.2279 1.22 900 0.2407 0.3190
0.2209 1.36 1000 0.2296 0.3077
0.2075 1.49 1100 0.2228 0.2931
0.1983 1.63 1200 0.2139 0.2809
0.1902 1.76 1300 0.2093 0.2688
0.1931 1.9 1400 0.2019 0.2666
0.1741 2.03 1500 0.1951 0.2521
0.1481 2.17 1600 0.1934 0.2435
0.1423 2.3 1700 0.1912 0.2409
0.1413 2.44 1800 0.1841 0.2368
0.1361 2.58 1900 0.1813 0.2310
0.1337 2.71 2000 0.1775 0.2279
0.1358 2.85 2100 0.1756 0.2247
0.133 2.98 2200 0.1741 0.2231

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gemmar/LugandaASRwav2Vec300M

Finetuned
(531)
this model

Evaluation results