SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: Funnyworld1412/ABSA_mpnet_MiniLM-L6-aspect
- SetFitABSA Polarity Model: Funnyworld1412/ABSA_mpnet_MiniLM-L6-polarity
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8317 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"Funnyworld1412/ABSA_mpnet_MiniLM-L6-aspect",
"Funnyworld1412/ABSA_mpnet_MiniLM-L6-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 29.9357 | 80 |
Label | Training Sample Count |
---|---|
no aspect | 3834 |
aspect | 1266 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.2801 | - |
0.0039 | 50 | 0.2365 | - |
0.0078 | 100 | 0.1068 | - |
0.0118 | 150 | 0.3401 | - |
0.0157 | 200 | 0.2112 | - |
0.0196 | 250 | 0.3529 | - |
0.0235 | 300 | 0.2338 | - |
0.0275 | 350 | 0.2039 | - |
0.0314 | 400 | 0.2006 | - |
0.0353 | 450 | 0.2939 | - |
0.0392 | 500 | 0.2053 | - |
0.0431 | 550 | 0.2036 | - |
0.0471 | 600 | 0.2229 | - |
0.0510 | 650 | 0.105 | - |
0.0549 | 700 | 0.2222 | - |
0.0588 | 750 | 0.1815 | - |
0.0627 | 800 | 0.2915 | - |
0.0667 | 850 | 0.276 | - |
0.0706 | 900 | 0.1682 | - |
0.0745 | 950 | 0.2328 | - |
0.0784 | 1000 | 0.2422 | - |
0.0824 | 1050 | 0.2753 | - |
0.0863 | 1100 | 0.2292 | - |
0.0902 | 1150 | 0.0791 | - |
0.0941 | 1200 | 0.3849 | - |
0.0980 | 1250 | 0.0964 | - |
0.1020 | 1300 | 0.1612 | - |
0.1059 | 1350 | 0.2755 | - |
0.1098 | 1400 | 0.1133 | - |
0.1137 | 1450 | 0.038 | - |
0.1176 | 1500 | 0.3195 | - |
0.1216 | 1550 | 0.0091 | - |
0.1255 | 1600 | 0.3148 | - |
0.1294 | 1650 | 0.1693 | - |
0.1333 | 1700 | 0.2411 | - |
0.1373 | 1750 | 0.2463 | - |
0.1412 | 1800 | 0.2807 | - |
0.1451 | 1850 | 0.112 | - |
0.1490 | 1900 | 0.2623 | - |
0.1529 | 1950 | 0.2465 | - |
0.1569 | 2000 | 0.4591 | - |
0.1608 | 2050 | 0.0556 | - |
0.1647 | 2100 | 0.0962 | - |
0.1686 | 2150 | 0.4525 | - |
0.1725 | 2200 | 0.2674 | - |
0.1765 | 2250 | 0.1513 | - |
0.1804 | 2300 | 0.3457 | - |
0.1843 | 2350 | 0.1415 | - |
0.1882 | 2400 | 0.0454 | - |
0.1922 | 2450 | 0.0156 | - |
0.1961 | 2500 | 0.2741 | - |
0.2 | 2550 | 0.1334 | - |
0.2039 | 2600 | 0.1838 | - |
0.2078 | 2650 | 0.1346 | - |
0.2118 | 2700 | 0.1022 | - |
0.2157 | 2750 | 0.3999 | - |
0.2196 | 2800 | 0.0953 | - |
0.2235 | 2850 | 0.1201 | - |
0.2275 | 2900 | 0.111 | - |
0.2314 | 2950 | 0.1081 | - |
0.2353 | 3000 | 0.1926 | - |
0.2392 | 3050 | 0.1047 | - |
0.2431 | 3100 | 0.2367 | - |
0.2471 | 3150 | 0.2034 | - |
0.2510 | 3200 | 0.0824 | - |
0.2549 | 3250 | 0.0338 | - |
0.2588 | 3300 | 0.2468 | - |
0.2627 | 3350 | 0.0082 | - |
0.2667 | 3400 | 0.0023 | - |
0.2706 | 3450 | 0.1106 | - |
0.2745 | 3500 | 0.1315 | - |
0.2784 | 3550 | 0.004 | - |
0.2824 | 3600 | 0.0836 | - |
0.2863 | 3650 | 0.2716 | - |
0.2902 | 3700 | 0.1873 | - |
0.2941 | 3750 | 0.4066 | - |
0.2980 | 3800 | 0.1448 | - |
0.3020 | 3850 | 0.0137 | - |
0.3059 | 3900 | 0.3471 | - |
0.3098 | 3950 | 0.1144 | - |
0.3137 | 4000 | 0.0596 | - |
0.3176 | 4050 | 0.0377 | - |
0.3216 | 4100 | 0.3316 | - |
0.3255 | 4150 | 0.0709 | - |
0.3294 | 4200 | 0.0515 | - |
0.3333 | 4250 | 0.2029 | - |
0.3373 | 4300 | 0.1191 | - |
0.3412 | 4350 | 0.2397 | - |
0.3451 | 4400 | 0.492 | - |
0.3490 | 4450 | 0.1178 | - |
0.3529 | 4500 | 0.3647 | - |
0.3569 | 4550 | 0.0098 | - |
0.3608 | 4600 | 0.2114 | - |
0.3647 | 4650 | 0.2392 | - |
0.3686 | 4700 | 0.2194 | - |
0.3725 | 4750 | 0.0578 | - |
0.3765 | 4800 | 0.0771 | - |
0.3804 | 4850 | 0.1582 | - |
0.3843 | 4900 | 0.0643 | - |
0.3882 | 4950 | 0.1372 | - |
0.3922 | 5000 | 0.0308 | - |
0.3961 | 5050 | 0.1247 | - |
0.4 | 5100 | 0.3076 | - |
0.4039 | 5150 | 0.1152 | - |
0.4078 | 5200 | 0.2112 | - |
0.4118 | 5250 | 0.0042 | - |
0.4157 | 5300 | 0.0869 | - |
0.4196 | 5350 | 0.0196 | - |
0.4235 | 5400 | 0.2406 | - |
0.4275 | 5450 | 0.3306 | - |
0.4314 | 5500 | 0.2328 | - |
0.4353 | 5550 | 0.008 | - |
0.4392 | 5600 | 0.0388 | - |
0.4431 | 5650 | 0.3812 | - |
0.4471 | 5700 | 0.6268 | - |
0.4510 | 5750 | 0.4426 | - |
0.4549 | 5800 | 0.1407 | - |
0.4588 | 5850 | 0.297 | - |
0.4627 | 5900 | 0.2657 | - |
0.4667 | 5950 | 0.1767 | - |
0.4706 | 6000 | 0.0152 | - |
0.4745 | 6050 | 0.2344 | - |
0.4784 | 6100 | 0.0447 | - |
0.4824 | 6150 | 0.0675 | - |
0.4863 | 6200 | 0.3086 | - |
0.4902 | 6250 | 0.5258 | - |
0.4941 | 6300 | 0.0826 | - |
0.4980 | 6350 | 0.0079 | - |
0.5020 | 6400 | 0.1817 | - |
0.5059 | 6450 | 0.0767 | - |
0.5098 | 6500 | 0.0221 | - |
0.5137 | 6550 | 0.0419 | - |
0.5176 | 6600 | 0.2452 | - |
0.5216 | 6650 | 0.0232 | - |
0.5255 | 6700 | 0.0804 | - |
0.5294 | 6750 | 0.1752 | - |
0.5333 | 6800 | 0.0127 | - |
0.5373 | 6850 | 0.0454 | - |
0.5412 | 6900 | 0.1759 | - |
0.5451 | 6950 | 0.0435 | - |
0.5490 | 7000 | 0.0109 | - |
0.5529 | 7050 | 0.0162 | - |
0.5569 | 7100 | 0.0133 | - |
0.5608 | 7150 | 0.2363 | - |
0.5647 | 7200 | 0.4987 | - |
0.5686 | 7250 | 0.1149 | - |
0.5725 | 7300 | 0.4613 | - |
0.5765 | 7350 | 0.3837 | - |
0.5804 | 7400 | 0.2439 | - |
0.5843 | 7450 | 0.0014 | - |
0.5882 | 7500 | 0.0177 | - |
0.5922 | 7550 | 0.0051 | - |
0.5961 | 7600 | 0.0418 | - |
0.6 | 7650 | 0.0061 | - |
0.6039 | 7700 | 0.2205 | - |
0.6078 | 7750 | 0.1769 | - |
0.6118 | 7800 | 0.0071 | - |
0.6157 | 7850 | 0.2271 | - |
0.6196 | 7900 | 0.3049 | - |
0.6235 | 7950 | 0.0016 | - |
0.6275 | 8000 | 0.2263 | - |
0.6314 | 8050 | 0.0057 | - |
0.6353 | 8100 | 0.1408 | - |
0.6392 | 8150 | 0.0303 | - |
0.6431 | 8200 | 0.0026 | - |
0.6471 | 8250 | 0.1743 | - |
0.6510 | 8300 | 0.2078 | - |
0.6549 | 8350 | 0.1764 | - |
0.6588 | 8400 | 0.0127 | - |
0.6627 | 8450 | 0.2435 | - |
0.6667 | 8500 | 0.0527 | - |
0.6706 | 8550 | 0.247 | - |
0.6745 | 8600 | 0.002 | - |
0.6784 | 8650 | 0.0087 | - |
0.6824 | 8700 | 0.1866 | - |
0.6863 | 8750 | 0.0087 | - |
0.6902 | 8800 | 0.1589 | - |
0.6941 | 8850 | 0.1848 | - |
0.6980 | 8900 | 0.0298 | - |
0.7020 | 8950 | 0.0081 | - |
0.7059 | 9000 | 0.3057 | - |
0.7098 | 9050 | 0.2059 | - |
0.7137 | 9100 | 0.2154 | - |
0.7176 | 9150 | 0.0013 | - |
0.7216 | 9200 | 0.1961 | - |
0.7255 | 9250 | 0.0129 | - |
0.7294 | 9300 | 0.0021 | - |
0.7333 | 9350 | 0.2106 | - |
0.7373 | 9400 | 0.0008 | - |
0.7412 | 9450 | 0.1261 | - |
0.7451 | 9500 | 0.1948 | - |
0.7490 | 9550 | 0.013 | - |
0.7529 | 9600 | 0.208 | - |
0.7569 | 9650 | 0.2382 | - |
0.7608 | 9700 | 0.0054 | - |
0.7647 | 9750 | 0.1869 | - |
0.7686 | 9800 | 0.0334 | - |
0.7725 | 9850 | 0.0197 | - |
0.7765 | 9900 | 0.0057 | - |
0.7804 | 9950 | 0.0056 | - |
0.7843 | 10000 | 0.0043 | - |
0.7882 | 10050 | 0.0025 | - |
0.7922 | 10100 | 0.6808 | - |
0.7961 | 10150 | 0.043 | - |
0.8 | 10200 | 0.0536 | - |
0.8039 | 10250 | 0.2435 | - |
0.8078 | 10300 | 0.0051 | - |
0.8118 | 10350 | 0.0653 | - |
0.8157 | 10400 | 0.017 | - |
0.8196 | 10450 | 0.0036 | - |
0.8235 | 10500 | 0.1561 | - |
0.8275 | 10550 | 0.001 | - |
0.8314 | 10600 | 0.1975 | - |
0.8353 | 10650 | 0.2378 | - |
0.8392 | 10700 | 0.1276 | - |
0.8431 | 10750 | 0.0719 | - |
0.8471 | 10800 | 0.1951 | - |
0.8510 | 10850 | 0.0446 | - |
0.8549 | 10900 | 0.2045 | - |
0.8588 | 10950 | 0.0598 | - |
0.8627 | 11000 | 0.0094 | - |
0.8667 | 11050 | 0.1117 | - |
0.8706 | 11100 | 0.0528 | - |
0.8745 | 11150 | 0.0047 | - |
0.8784 | 11200 | 0.1492 | - |
0.8824 | 11250 | 0.2204 | - |
0.8863 | 11300 | 0.0089 | - |
0.8902 | 11350 | 0.0709 | - |
0.8941 | 11400 | 0.1111 | - |
0.8980 | 11450 | 0.0048 | - |
0.9020 | 11500 | 0.0173 | - |
0.9059 | 11550 | 0.2862 | - |
0.9098 | 11600 | 0.2745 | - |
0.9137 | 11650 | 0.0054 | - |
0.9176 | 11700 | 0.0074 | - |
0.9216 | 11750 | 0.0036 | - |
0.9255 | 11800 | 0.0869 | - |
0.9294 | 11850 | 0.2333 | - |
0.9333 | 11900 | 0.15 | - |
0.9373 | 11950 | 0.066 | - |
0.9412 | 12000 | 0.1742 | - |
0.9451 | 12050 | 0.0009 | - |
0.9490 | 12100 | 0.1246 | - |
0.9529 | 12150 | 0.1674 | - |
0.9569 | 12200 | 0.1937 | - |
0.9608 | 12250 | 0.0724 | - |
0.9647 | 12300 | 0.0044 | - |
0.9686 | 12350 | 0.0013 | - |
0.9725 | 12400 | 0.0313 | - |
0.9765 | 12450 | 0.0925 | - |
0.9804 | 12500 | 0.1742 | - |
0.9843 | 12550 | 0.2294 | - |
0.9882 | 12600 | 0.1073 | - |
0.9922 | 12650 | 0.038 | - |
0.9961 | 12700 | 0.1866 | - |
1.0 | 12750 | 0.0141 | 0.2274 |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.5
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.19.2
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 20
Inference API (serverless) has been turned off for this model.
Model tree for Funnyworld1412/ABSA_mpnet_MiniLM-L6-aspect
Base model
sentence-transformers/all-MiniLM-L6-v2