bert-base-multilingual-cased-tat

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1705
  • Accuracy: 0.79
  • F1 Binary: 0.44
  • Precision: 0.3449
  • Recall: 0.6074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 15
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Binary Precision Recall
No log 1.0 75 0.1401 0.6917 0.3440 0.2419 0.5951
No log 2.0 150 0.1516 0.7808 0.4392 0.3366 0.6319
No log 3.0 225 0.1687 0.7142 0.4014 0.2805 0.7055
No log 4.0 300 0.1705 0.79 0.44 0.3449 0.6074

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FrinzTheCoder/bert-base-multilingual-cased-tat

Finetuned
(622)
this model