bert-base-multilingual-cased-swe
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0960
- Accuracy: 0.8305
- F1 Binary: 0.6109
- Precision: 0.4922
- Recall: 0.8051
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 17
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 89 | 0.1151 | 0.6218 | 0.4421 | 0.2923 | 0.9068 |
No log | 2.0 | 178 | 0.0722 | 0.7794 | 0.5532 | 0.4158 | 0.8263 |
No log | 3.0 | 267 | 0.1433 | 0.8347 | 0.5945 | 0.5 | 0.7331 |
No log | 4.0 | 356 | 0.0960 | 0.8305 | 0.6109 | 0.4922 | 0.8051 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for FrinzTheCoder/bert-base-multilingual-cased-swe
Base model
google-bert/bert-base-multilingual-cased